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a b s t r a c t

To understand the sophisticated control mechanisms of the human’s endocrine system is a challeng-
ing task that is a crucial step towards precise medical treatment of many dysfunctions and diseases.
Althoughmathematicalmodels describing the endocrine systemas awhole are still elusive, recently some
substantial progress has been made in analyzing theoretically its subsystems (or axes) that regulate the
production of specific hormones. Secretion of many vital hormones, responsible for growth, reproduction
and metabolism, is orchestrated by feedback mechanisms that are similar in structure to the model of
simple genetic oscillators, proposed first by B.C. Goodwin. Unlike the celebrated Goodwin’s model, the
endocrine regulation mechanisms are in fact known to have non-cyclic structures and involve multiple
feedbacks; a Goodwin-type model thus represents only a part of such a complicated mechanism. In this
paper, we examine a non-cyclic feedback system of hormonal regulation, obtained from the classical
Goodwin’s oscillator by introducing an additional negative feedback. We establish global properties of
this model and show, in particular, that the local instability of its unique equilibrium implies that almost
all system’s solutions oscillate; furthermore, under additional restrictions these solutions converge to
periodic or homoclinic orbits.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Hormones are signaling molecules that are secreted by glands,
transported by blood, and involved in many vital bodily functions.
Sophisticatedmechanismsof interactions betweenglands andhor-
mones couple them into the endocrine system, whose mathemat-
ical modeling remains a challenging problem. However, visible
progress has been made in modeling some of its subsystems (or
axes), responsible for the secretion of specific hormones. In par-
ticular, the general control mechanisms in hypothalamic-pituitary
(HP) neurohormonal axes, maintaining processes of growth,
metabolism, reproduction and stress resistance, have been re-
vealed (Evans, Farhy & Johnson, 2009; Stear, 1975). Regulatory
centers in hypothalamus produce neurohormones, called releasing
hormones or releasing factors (Stear, 1975). Each of these hormones
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stimulates the secretion of the corresponding tropic hormone by
the pituitary gland, which, in turn, stimulates some target gland
or organ to release the effector hormone (Fig. 1b). Besides its
direct signaling functions, the effector hormone inhibits the pro-
duction of the corresponding releasing and tropic hormones. These
negative feedback loops maintain the concentrations of all three
hormones within certain limits.

The understanding of hormonal (in particular, testosterone and
cortisol) regulation mechanisms leads to the possibilities of ef-
ficient diagnosing and treatment of hormonal dysfunctions and
diseases caused by them, such as reproductive failures andprostate
cancer (Evans et al., 2009), obesity and aging (Veldhuis, 1999)
and disorders of the central nervous system (Bairagi, Chatterjee &
Chattopadhyay, 2008). This motivates the development of math-
ematical models, portraying the complex behavior of hormonal
axes.

The blood levels of hormones exhibit both circadian (24-hour)
and short-period oscillations (Keenan, Sun, & Veldhuis, 2000),
resembling the dynamics of the celebrated Goodwin’s oscillator
(Goodwin, 1965). Considered as a ‘‘prototypical biological oscil-
lator’’ (Gonze & Abou-Jaoude, 2013), Goodwin’s model has been
extensively used to describe the dynamics of HP axes, e.g. testos-
terone regulation (Smith, 1980). For Goodwin’s model and more
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Fig. 1. (a) The cyclic system of testosterone regulation (Churilov, Medvedev &
Shepeljavyi, 2009; Smith, 1980); (b) The structure of a hypothalamic-pituitary axis
(Stear, 1975).

general cyclic feedback systems, profound mathematical results
have been established, ensuring the existence of periodic orbits
(Hastings, Tyson, & Webster, 1977; Hori, Kim, & Hara, 2011) in the
case where the (unique) system’s equilibrium is unstable. For the
classicalmodel fromGoodwin (1965) such an instability appears to
be a restrictive condition; for example, the feedback is described by
the conventional Hill function (Gonze & Abou-Jaoude, 2013) with
the corresponding Hill constant being required to be greater than 8
(Smith, 1980; Thron, 1991). This restriction can be relaxed, taking
into account transport delays (Murray, 2002), pulsatile secretion of
neurohormones (Churilov, Medvedev, & Mattsson, 2014; Churilov
et al., 2009; Evans et al., 2009) and stochastic noises (Keenan et al.,
2000).

Although relatively well studied, cyclic models of HP axes
are restrictive, assuming the presence of only one negative feed-
back loop, as illustrated by the models of testosterone regulation
(Fig. 1a), examined in Churilov et al. (2009) and Smith (1980). The
actual mechanism of an HP axis in fact involves multiple feedback
loops (Stear, 1975): the effector hormones inhibit the secretion of
both releasing and tropic hormones, closing thus the long negative
feedback loops (F1, F2 in Fig. 1b). Besides them, the short feedback
loop (F3) also exists, whose effect, however, is ignored by most of
the existing mathematical models of endocrine regulation (Bairagi
et al., 2008; Greenhalgh & Khan, 2009; Liu & Deng, 1991; Sriram,
Rodriguez-Fernandez, & Doyle, 2012; Vinther, Andersen, & Otte-
sen, 2011) since it is much weaker than the long feedbacks and
‘‘most vulnerable’’ (Stear, 1975) among the three types of feedback
mechanisms.

Mathematical models, taking the existence of multiple feed-
back loops into account, have been proposed for the testosterone
(Greenhalgh & Khan, 2009; Liu & Deng, 1991; Tanutpanit, Pong-
sumpun, & Tang, 2015) and cortisol regulation (Bairagi et al., 2008;
Sriram et al., 2012; Vinther et al., 2011). Similarmodelswithmulti-
ple feedback loops have been reported to describe the dynamics of
somemetabolic pathways (Ghomsi, Kakmeni, Kofane & Tchawoua,
2014; Sinha & Ramaswamy, 1987). Unlike the classical Goodwin’s
oscillator, these models do not have the cyclic structure, which
makes the relevant results, ensuring the existence or absence of
periodic solutions (Hastings et al., 1977; Hori et al., 2011; Thron,
1991), inapplicable. Mathematical studies of such models have
been limited to analysis of local stability and Hopf bifurcations.

In this paper, we examine a model of hormonal regulation with
two negative feedbacks, originally proposed in Bairagi et al. (2008)
to describe themechanismof cortisol regulation in the adrenal axis
(hypothalamus–pituitary–adrenal cortex). Our simulations (Sec-
tion 5) show its applicability to testosterone regulation modeling.

The model is similar in structure to the classical Goodwin’s oscil-
lator, but involves two the negative feedbacks (F1, F2 in Fig. 1b)
from the effector hormone to the releasing and tropic hormones.
Unlike the original model in Bairagi et al. (2008), we do not restrict
these nonlinearities to be identical or Hill functions. To keep the
analysis concise, in this paper we neglect the transport delays, dis-
continuities, describing the pulsatile secretion of neurohormones,
and the effects of stochastic noises. For the model in question, we
develop the ‘‘global’’ theory, showing that its properties are similar
to those of the Goodwin’s oscillator, e.g. under some assumptions,
the local instability of the equilibrium implies the existence of
periodic orbits and, furthermore, the convergence of almost any
solution to such an orbit.

This paper is organized as follows. Section 2 introduces the
model in question, whose local stability properties are examined
in Section 3. Section 4 presents the main results of the paper, con-
cerned with global properties of the system. Section 5 illustrates
the model in question by numerical simulations. The results of the
paper are proved in Section 6. Section 7 concludes the paper.

2. The Goodwin–Smith model and its extension

We start with the conventional Goodwin’s model (Goodwin,
1965), describing a self-regulating system of three chemicals,
whose concentrations are denoted by R, L and T and evolve in
accordance with the following equations

Ṙ = −b1R + f (T ),

L̇ = g1R − b2L, (1)

Ṫ = g2L − b3T .

Our notation follows Smith (1980), where Goodwin’s oscilla-
tor was proposed for modeling of the gonadal axis in male
(Fig. 1a) and R, L, T stood, respectively, for the blood levels of the
gonadotropin-releasing hormone (GnRH), luteinizing hormone
(LH) and testosterone (Te). The constants b1, b2, b3 > 0 are
the clearing rates of the corresponding chemicals, whereas the
constants g1, g2 > 0 and the nonnegative decreasing function
f (T ) determine their production rates. Often f (·) stands for the Hill
function (Gonze & Abou-Jaoude, 2013)

f (T ) =
K

1 + βT n , K , β, n > 0. (2)

The releasing factor (R) drives the production of the tropic hor-
mone (L), which in turn stimulates the secretion of the effector
hormone (T ). The effector hormone inhibits the production of the
releasing factor: an increase in T reduces the production rate Ṙ, and
vice versa.

In this paper, we consider a generalization of Goodwin’s oscil-
lator (1), including two negative feedbacks

Ṙ = −b1R + f1(T ),

L̇ = g1R − b2L + f2(T ), (3)

Ṫ = g2L − b3T .

A special case of (3), where f1 and f2 stand for the Hill nonlinearities
with the same Hill constant n has been proposed in Bairagi et al.
(2008) to describe the dynamics of adrenal axis: R, L, T stand, re-
spectively, for the levels of corticotropin-releasing hormone (CRH),
adrenocorticotropic hormone (ACTH) and cortisol. The nonlinear-
ities f1 and f2 describe respectively the negative feedbacks F1
and F2 in Fig. 1b; the effect of short negative feedback (F3) is
neglected. Unlike Bairagi et al. (2008), these nonlinear maps are
not necessarily identical or Hill functions. As discussed in Vinther et
al. (2011), dealing with a similar model of cortisol regulation, the
natural assumptions on these functions are their non-negativity
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