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Abstract: The paper shows Matlab based interactive tool for noise attenuation motivated
filtered PD and disturbance observer based filtered PID controller performance analyses and
design. The user can set several control loop parameters (plant model parameters and their
uncertainty, measurement noise, controller, filter parameters) and evaluate various performance
measures. The comparison with traditional linear PID controller design methods can be made.
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1. INTRODUCTION

New modular filtered PD and disturbance observer (DO)
based filtered PID (DO-FPID) controller design allowing
an eagsy filter specification for an appropriate noise atten-
uation has been proposed in Huba (2013b,a). This paper
describes an interactive computer tool enabling users to
interact with controller design treated in these papers and
to explore in depth features of particular controller and
filter tunings. Similar tools are available for large area
of control related tasks (see e.g.Dormido et al. (2011);
Rodriguez et al. (1996); Kroumov et al. (2003); Carrero
et al. (2010)).

The paper is organized as follows The performance mea-
sures used to evaluate the considered control performance
are discussed in Section 1.1. Filtered PD and DO-PID
controllers (FPD/DO-FPID) are presented in section 1.2.
Pole assignment control of filtered PD control is briefly
treated in Section.l.3. Possible solutions to the problem
of dynamics specification and noise attenuation by an
equivalence of time delays is described in Section 1.4. Pos-
sible extensions of the proposed time constant equivalence
derived for integral plants is mentioned in Section 1.5. The
interactive tool features are described in section 2. Possible
tasks appropriate for the tool application are discussed in
Section 3. Contributions of the paper are summarized in
Conclusions.

1.1 Performance measures

Speed of the transients at the plant output will be quan-
tified by means of the IAE (Integral of Absolute Error)

TAE = | |e(t)| dt 1)
/

For evaluating deviations from ideal shapes of the setpoint
responses at the plant input and output (Huba, 2013b),
relative measures for deviations from monotonic (MO),

* This work has also been supported by Slovenskd, e-akadémia, n.o.

one-pulse (1P) and two-pulse (2P) shapes may be proposed
(Huba, 2010, 2013c). Deviations from strictly MO shape
of the plant output y(¢) with the initial value yo and the
final value y,, may be characterized by

yTVo = > |yir1 — vil = yoo — 0l (2)

yT'Vy = 0 just for strictly MO response, else yT'Vy > 0.

Contribution of the superimposed oscillations in 1P dom-
inant control (typical for the output disturbance step re-
sponses) are for y,, = maxz{y} expressed by

yTVi =Y [gie1 — vil = 120m — Yoo — %0l (3)

K2

yT'Vi = 0 just for strictly 1P response, else for control
signals with superimposed higher harmonics yT'V; > 0.

Integral deviations from an ideal 2P input shape with two
extreme points 1, U, may be characterized by

uTV2 = Z \qu — ul| — |2um1 — 2um2 — U — UO‘ (4)

Again, for ideal 2P control functions u(t), uT'V4 = 0.

In evaluating disturbance response one has to note that
immediately after a disturbance step the plant output
starts to rise (fall). The controller needs some time to
balance its effect and to reverse output to move back
to the reference value. So, the evaluation of MO output
increase (decrease) may start just after its turnover, which
requires to evaluate deviations from 1P shapes by yT'V;
measure. Thereby, MO areas for disturbance response
are in general different from those corresponding to the
setpoint steps and the controller design has to compromise
these differences.

1.2 Filtered PD and DO-PID Control

In designing filtered PD and DO-FPID controllers, a
dominant 2nd-order plant dynamics is considered, with an
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input disturbance d;, x = (y,9)’,& = dy/dt and y being
the plant state and output

y:Ks(ur+di) 7alyfa0y (5)

In working with stable, integral and unstable systems, this
plant description leads to the “pole-zero form* transfer
function

F(s) = [YXS)]dri)= S - (6)

U, (s) s2+a1s+ ap

that is more universal than the usual “static-gain-time-
constant“ form. Plant approximation (5) used above for
design of the controller itself is not sufficient for its reliable
tuning. Some constraints on set of admissible closed loop
poles may be derived just by considering additional loop
dynamics comprising the inherently included nonmodelled
dynamics together with the intentionally introduced dy-
namics of different filters used to get a proper controller, to
increase robustness and to attenuate measurement noise.

In determining loop approximations including the non-
modelled dynamics one may work with several types
of time delays. Most frequently (Astrém and Hagglund,
1995, 2006; Hagglund, 2012; Larsson and Hagglund, 2012;
Segovia et al., 2014) 2nd and 3rd order linear models, or
the first order linear model with dead time are used. In
order to develop a consistent approach covering all possible
situations met in practice, this set will yet be extended by
higher order approximations. In order to keep the number
of unknown parameters as low as possible, just two (or,
more precisely, three) parameter loop model S, (s) with
K, n and T, will be preferred, when aq,ag have been
neglected

K, .
(s2+ays+ag) (Tps+1)"’
! (7)
Fo(s) = =
(Ths+1)
0<T, <<Ty=+/1/]aglyn=1, 2, ...

For determining parameters of these approximations there
exist huge number of methods based e.g. on measuring
and evaluating step responses, ultimate sensitivity ex-
periments, relay experiments, etc. and fulfilling different
performance specifications. Furthermore, in Huba (2012) it
has been shown that for the first order plants and increas-
ing n the loop performance approaches that of the loop
with an equivalent dead time, which enables to simplify the
overall treatment. Thereby, use of higher order filters may
significantly improve the closed loop performance Huba
(2015a).

Sn(s) =

1.3 FPD controller

For stepwise constant setpoint values r, under pole assign-
ment control of the plant (6) one can require the setpoint-
to-output relation characterized by the closed loop poles

aq, g, or the corresponding time constants T,; = —1/q;
as
Y (s) 1
F.(s) = = 8
() R(s) (Trs+1)(Tras+1) ®)

When considering plant (5) and solving for u one gets

d(
r e u, ¢
e —p y
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Fig. 1. DO-FPID control using equal filtration of all chan-
nels of the state observer (SO) and of the disturbance
observer (DO)

u=Kpe+ KpIpé+us = Kpe+ Kpé + us
E=T—=Y; uoo:a()T/Ks_di

Kp _ Q10 — Qg
Ks (9)
a1 + a4+ aq
Tp=————"—
a1ig — @
K — a11+2a2 +0a1
D= 7[(8

Thereby, the static feedforward control u., is necessary
for keeping the output in a steady state at the required
reference value r under influence of a constant disturbance
d;.

Closed loop with PD-controller (9) remains stable, when
its poles remain negative, i.e.

KpKs+ag>0; KpK,Tp + a1 >0 (10)
For stable and marginally stable plants (a; > 0) this holds
for any KpK, > 0, Tp > 0 and stability will be satisfied
by any 0 < T;. < oo. For unstable plants with ag < 0 it

must hold
T, <+ —1/ay =T, (11)

i.e. the controller gain Kp cannot be arbitrarily decreased
(the closed loop time constant 7T, cannot be arbitrarily
increased), just to a value fulfilling (11).

Introduction of filters Fj,(s) into the closed loop makes
the above pole assignment controller tuning unusable. The
question is, how to organize the closed loop tuning in such
a way that it allows to interact with the choice of an
appropriate filter order influencing the noise attenuation
without changing dynamics of the required closed loop
transients.

1.4 Time Constants Equivalence

For a simple noise attenuation tuning by filters with an
order n one needs a method allowing to keep a nearly
constant performance independently from the chosen filter
order. This may be derived by analyzing closed loops
including either the filter F,, with a time constant T,,,
or a pure dead time Ty. In this way, several equivalences
of these time delays may be established (Huba, 2013b,a).
The simplest open loop delay equivalence T, = Ty/n
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