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a b s t r a c t

This paper addresses the leader-following attitude consensus problem for a group of spacecraft when at
least one follower can access the leader’s attitude and velocity relative to the inertial space. A nonlinear
distributed observer is designed to estimate the leader’s states for each follower. The observer possesses
one important and novel feature of keeping attitude and angular velocity estimation errors on second-
order sliding modes, and thus provides finite-time convergent estimates for each follower. Further,
quaternion-based hybrid homogeneous controllers recently developed for single spacecraft are extended
and then applied, by establishing a separation principle with the proposed observer, to track the leader’s
attitude motion. As a result, global finite-time attitude consensus is achieved on the entire attitude
manifold, with either full-state measurements or attitude-only measurements, as long as the network
topology among the followers is undirected and connected. Numerical simulations are presented to
demonstrate the performance of the proposed methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed attitude consensus of multiple cooperative space-
craft has drawn increasing attention due to its applications in
formation flying, space-based interferometry, in-orbit assembly,
etc. It can be classified as two types, namely, leaderless consensus
that requires all spacecraft to reach an arbitrary yet probably a
priori unknown synchronized state (Thunberg, Song, Montijano,
Hong, & Hu, 2014), and leader-following consensus that requires
each follower to track a prescribed group attitude trajectory pro-
vided by a real or virtual leader (see Abdessameud & Tayebi, 2009;
Dimarogonas, Tsiotras, & Kyriakopoulos, 2009; VanDyke & Hall,
2006). This paper mainly focuses on the leader-following type.

The leader-following attitude consensus issue was first ad-
dressed by assuming that the leader’s trajectory is available to
all followers Abdessameud and Tayebi (2009), Dimarogonas et al.
(2009), Mayhew, Sanfelice, Sheng, Arcak, and Teel (2012), Ren
(2010) and VanDyke and Hall (2006). In practice, a more common
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yet challenging case is that only a portion of the followers can
access the state of the leader. To deal with this problem, first-
order sliding mode estimators were derived in Meng, Ren, and
You (2010), Zou (2014) and Zou, de Ruiter, and Kumar (2016)
to estimate the reference attitude and/or velocity in finite time.
These designs can be traced back to the work of Cao, Ren, and
Meng (2010) for single/double-integrator systems. Asymptotic dis-
tributed estimators were also proposed when the reference angu-
lar velocity is linearly parameterized (Bai, Arcak, & Wen, 2008) or
generated by a known, stable, linear system (Cai & Huang, 2014,
2016). The methods of Du, Li, and Qian (2011) and Ren (2007,
2010) involve no estimators but require the spacecraft to trans-
mit their accelerations apart from their attitudes and velocities.
Among the above methods, those of Du et al. (2011) and Zou et al.
(2016), further guarantee finite-time stability, which implies that
the consensus behavior can be achieved in finite time instead of
infinite time as for asymptotic or exponential stability. In addition,
angular velocity measurements are not needed for the consensus
algorithms of Abdessameud and Tayebi (2009), Cai and Huang
(2016), Lawton and Beard (2002), Ren (2010), Zou (2014) and Zou
et al. (2016).

Another important issue is the complex nonlinearity intrinsic
in attitude control. More precisely, the attitude configuration, the
set of 3 × 3 rotation matrices SO(3), is a nonlinear manifold not
diffeomorphic to any Euclidean space and precludes the existence
of continuous, globally stabilizing, state-feedback laws on SO(3)
(Bhat & Bernstein, 2000; Chaturvedi, Sanyal, &McClamroch, 2011).
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In addition, the attitude kinematics and dynamics are both nonlin-
ear. Due to these features, the attitude consensus laws extended
from algorithms for linear systems ensure merely local or at most
almost global stability (Igarashi, Hatanaka, Fujita, & Spong, 2009;
Thunberg et al., 2014) while the methods of Zou (2014) and Zou
et al. (2016) result in semi-global stability. In addition, some
quaternion-based control schemes can cause the undesirable un-
winding phenomenon due to neglecting that the unit-quaternion
space is a double-covering of SO(3) (Bai et al., 2008; Cai & Huang,
2014, 2016; Ren, 2007). To overcome this problem, Mayhew et al.
(2012) developed a hybrid feedback scheme with network-based
hysteretic switching logics, resulting in global attitude consensus
and simultaneous robustness to measurement noise. This method,
however, relies on the availability of the leader’s state to all fol-
lowers and, similarly to Abdessameud and Tayebi (2009) and Bai
et al. (2008), does not allow cycles in the communication graph.
Otherwise, undesirable equilibria other than the consensus state
can arise and fail the control objective.

This paper investigates the global attitude consensus of a
leader-following spacecraft network in terms of the quaternion
parameterization. The communication graph between followers is
assumed to be an undirected connected graph and only a subset of
the followers has access to the dynamic leader. In order to estimate
the leader’s states for each follower, a novel nonlinear distributed
observer is designed such that finite-time convergence is guaran-
teed only if at least one follower connects to the leader. Following
this, the hybrid homogeneous attitude controllers developed in
Gui and Vukovich (2016) are extended and then applied together
with the distributed observer to perform consensus control by
establishing a separation principle. More precisely, the resultant
consensus laws can restore the uniformly globally finite-time sta-
ble systems of Gui and Vukovich (2016), in both the full-state
measurement case and attitude-only measurement case, where
the latter relies on a quaternion filter to inject the necessary damp-
ing instead of velocity feedback. As a result, the proposed control
schemes avoid the unwinding problem and achieve global finite-
time attitude consensus which, to the best of the our knowledge,
has not been reported in existing cooperative attitude control
literature. As another contribution, the proposed observer requires
only the boundedness of the leader’s angular velocity and its
derivatives for finite-time convergence and hence possesses better
robustness and allowsmore generic reference trajectories than the
distributed observers in Cai and Huang (2014, 2016) which are
limited to stationary or periodic reference trajectories. In addition,
it keeps the attitude and angular velocity estimation errors on
second-order sliding modes, indicating higher accuracy during
digital implementation than the distributed estimator derived in
Cao et al. (2010) and its variants in Meng et al. (2010), Zou (2014)
and Zou et al. (2016) that all attain first-order sliding modes.

2. Preliminaries

Throughout this paper, denote by In the n × n identity matrix,
1n = [1, . . . , 1]T , and In = {1, . . . , n}. For all x ∈ R and α ≥ 0,
let sgnα(x) = sgn(x)|x|α and satα(x) = sgn(x)min{|x|α, 1}, where
sgn(·) is the standard sign function. Clearly, sgnα(x) is a continuous
nonsmooth function if 0 < α < 1, while satα(x) becomes the stan-
dard saturation function sat(x) if α = 1. For all x = [x1, . . . , xn]T ∈

Rn and α ≥ 0, let sgnα(x) = [sgnα(x1), . . . , sgnα(xn)] and satα(x) =

[satα(x1), . . . , satα(xn)]. Denote by ∥ · ∥p the p-norm of a vector,
respectively, for p = 1, 2, ∞. For all A ∈ Rm×n, let σ̄ (A) and σ (A) be
itsmaximumandminimumsingular values, respectively. Note that
σ̄ (A) equals to its induced 2-norm ∥A∥2 = max{x∈Rn:∥x∥2=1}∥Ax∥2.
Given x ∈ R3, x× is the skew-symmetric matrix satisfying x×y =

x × y, ∀y ∈ R3, where × is the cross product on R3.

A quaternion Q = [η, qT ]T ∈ R4 consists of a scalar part η ∈ R
and a vector part q ∈ R3. Let vec(Q ) give the vector part of Q ,
i.e., vec(Q ) = q. The quaternion multiplication is defined as

Q ◦ Q ′
=

[
ηη′

− qTq′

ηq′
+ η′q + q × q′

]
,Q ′

= [η′, q′T
]
T

∈ R4

which is associative and distributive but is not commutative. In ad-
dition, the conjugation of Q is given by Q ∗

= [η, −qT ]T ∈ R4. Note
that (Q ◦Q ′)∗ = (Q ′)∗ ◦Q ∗. A 3-D vector is treated as a quaternion
with zero scalar part when operating with a quaternion. With the
identity element 1 = [1, 0, 0, 0]T , the set of unit quaternions is
defined as S3

= {Q ∈ R4
: Q ◦ Q ∗

= 1}.

2.1. System equations

Consider a system of n rigid spacecraft (agents). Denote by Qi =

[ηi, qTi ]
T

∈ S3, ∀i ∈ In, the attitude quaternion of the body-fixed
frame of the ith agent, Fi, relative to the inertial frame FI . The
equations of motion of the ith agent are

Q̇i =
1
2
Qi ◦ ωi =

1
2
E(Qi)ωi, E(Qi) =

[
−qTi

q×

i + ηiI3

]
(1)

Jiω̇i = −ωi × Jiωi + ui, (2)

where ωi ∈ R3 and Ji = JTi are the angular velocity and inertia
tensor of agent i expressed in Fi. ui is the corresponding control
torque. The rotation matrix from FI to Fi can be computed from Qi
by

R(Qi) = (η2
i − qTi qi)I3 − 2ηiq×

i + 2qiqTi . (3)

Assume that the desired trajectory is generated by a leader space-
craft with body-fixed frame F0. Denote by Q0 ∈ S3 and ω0 ∈ R3

the attitude quaternion and angular velocity of F0 relative to FI .
In addition, (Q0, ω0) obeys the same kinematics as (1). The attitude
and angular velocity error of the ith follower relative to the leader
is defined as Qi0 = Q ∗

0 ◦ Qi and ωi0 = ωi − R(Qi0)ω0. Letting
ω̄i0 = R(Qi0)ω0, the system equations in terms of Qi0 and ωi0 are
then written as

Q̇i0 =
1
2
Qi0 ◦ ωi0 =

1
2
E(Qi0)ωi0, (4)

Jiω̇i0 = Ξ (ωi0, ω̄i0)ωi0 − ufi + ui, (5)

where Ξ (ωi0, ω̄i0) = (Jiωi0 + Jiω̄i0)× − ω̄×

i0 Ji − Jiω̄×

i0 is skew-
symmetric and

ufi = JiR(Qi0)ω̇0 + ω̄×

i0 Jiω̄i0, (6)

represents the torque to be compensated for perfect tracking of the
desired trajectory. When every follower has access to the leader’s
trajectory, attitude consensus can be achieved by applying the
controllers of Gui and Vukovich (2016) andMayhew, Sanfelice, and
Teel (2011) to globally stabilize (Qi0, ωi0) = (±1, 0), i ∈ In. These
methods, however, cannot be applied if the leader’s trajectory is
available to only one or some of the followers.

As many studies on coordinated attitude control of formation
flying spacecraft, the above dynamics models assume that all
spacecraft share the same inertial frame FI . This is true in practice
because the inertial frame is usually set as the Earth-centered
inertial frame for Earth spacecraft systems, and the heliocentric
inertial frame for deep-space spacecraft systems.

2.2. Communication graph

The information flow for n followers is assumed to be bidirec-
tional and can be described by a weighted undirected graph G ≜
(V, E), where V = {1, . . . , n} is the node set and E ⊆ V × V is the
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