ScienceDirect

Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 48-29 (2015) 247-252

Remote Interoperability Protocol: A bridge
between interactive interfaces and

engineering systems.

*

Jesiis Chacon* Gonzalo Farias ** Hector Vargas™*
Antonio Visioli *** Sebastidan Dormido *

* Universidad Nacional de Educacion a Distancia,
e-mail: jchacon@bec.uned.es.
** Pontificia Universidad Catolica de Valparaiso, Chile.
*** Dipartimento di Ingegneria Meccanica e Industriale,
Universita degli Studi di Brescia, Italia.

Abstract: The process of building remote or virtual laboratories to be deployed via Internet
usually involves communication between different software tools. Very often, there is a separation
between the software which interfaces with the model or real system, and the software responsible
of providing the student with an interactive and visual representation of the data provided by the
engineering system. Abstracting the way these two elements communicate with each other from
the particular implementation, the requirements are frequently the same: connection and session
control, data transmission control, user interaction handling, etc. This work describes a generic
protocol to interoperate remotely any kind of engineering software. The solution proposes to
encapsulate all the communication issues into an interoperability API that can be implemented
in many different systems. In order to show the flexibility of such API, an implementation to
interoperate MATLAB from Java user interfaces via JSONRPC is explained in detail.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: control education, interactive, teaching, computer interfaces, communication

protocols

1. INTRODUCTION

Networks such as the Internet are widely distributed in
society, connecting people across of the world. The con-
nectivity between many different computational devices is
increasing every year and, nowadays, the scientific com-
munity and engineering companies invest economical and
research effort in the development of technologies and
standard for the Internet of Things (IoT, sometimes In-
ternet of Everything). Under this term, there is a network
of physical things or objects with connectivity to enable
data communication with other devices. Within the IoT,
there are countless devices that can be sensed or controlled
via Internet, encouraging the integration between physical
world and computer-based systems.

Educators can also benefit from this situation offering their
students new ways to access learning resources without
time and location constraints. And, in fact, in the last
years the scientific community has devoted great efforts to
apply the advances in these fields to engineering education
(Heck, 1999; Dormido, 2004), yielding a plethora of online
interactive tools, presented either as simulations or as
remote experiences in real plants. But, as in IoT, one
of the concerns is the scalability and interoperability, in
part due to the variety of devices and the intense use
of machine-to-machine (M2M) communications. Among

* This work has been funded by the National Plan Project DP12012-
31303 of the Spanish Ministry of Science and Innovation and FEDER
funds.

all the opportunities that these technologies offer, three
of them present features of special interest to teaching
engineering: network communications, visualization, and
interactivity.

Visualization and interactivity have proved to be crucial
aspects when designing virtual labs, i.e. simulations that
are to be used for pedagogical purposes, in the field of
control engineering. The graphical capabilities of com-
puters, using images or animations, can help students to
understand more easily the key concepts of the system
under study. Moreover, interactivity allows students to
simultaneously see the response of the systems to any
change introduced by the user (Dormido et al., 2005a;
Sénchez et al., 2002). These features add to engineering
simulations rich visual content and the possibility of an
immediate observation of system response, which turns
a simulation into a natural and human-friendly way to
learn, helping the student to get useful practical insight
into engineering systems fundamentals.

Currently, there are many tools available to build simu-
lations of a wide range of systems in control engineering.
These tools provide great capabilities that allow to study
the behaviour of the systems under different scenarios, as
well as countless hardware drivers to connect any kind of
device. In control enginering, MATLAB (The MathWorks,
2015) is the de facto standard software tool. It is a tech-
nical and numerical computing environment, which was
born as a tool to manipulate matrix. But there are many

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2015.11.244

248 Jesuis Chacon et al. / [FAC-PapersOnLine 48-29 (2015) 247-252

other tools, either commercial products such as LabVIEW,
Sysquake, Maple, Mathematica, open source tools like
Scilab, Maxima, Octave, or even programming languages
with numerical computing libraries such as NumPy/SciPy
for Python, and Numeric.js for JavaScript. Though some
of these tools have support to develop graphical interfaces,
usually they are far from being ideal for unexperienced
programmers to develop interactive tools.

The aim of this paper is to describe an interoperability
protocol for remote and virtual laboratories, based on
previous work (Sanchez et al., 2002; Dormido et al., 2005b;
Farias et al., 2011; Chacon et al., 2015). The basic needs of
an online interactive learning tool are captured in an easy-
to-use and easy to implement protocol to help interconnect
human interfaces to engineering simulations.

With this protocol, the development of an interactive
learning tool for engineering can be decoupled in two tasks.
On the one hand, the model of the engineering simulation
or the interface to the process is created using a special-
ized software like MATLAB, LabVIEW or whatever the
developer feels comfortable with. On the other hand, the
human interface can be created using another software tool
specialized in the design and implementation of graphical
interfaces for non-expert programmers as, for example,
Easy Java Simulations (EJS, (Esquembre, 2015)). This
two components can be easily connected through a well-
defined, simple and effective protocol, having a high-degree
of independence.

In this way, not only the development effort is rationalized,
because many software components can be reused and
shared between different interactive tools, but also help
the educator focus on the design of the experience and
the visualization, while devoting less effort to the low-level
implementation details. Moreover, if an engineering system
adhere to the protocol, it is even possible to use it without
knowing these implementation details, but only using the
interface to interact with it. This enable a new paradigm
of design, where physical resources can be shared between
different universities, having the same or different views
and experiences to carry out with the system, depending
on the particular needs of each user. Despite from that,
there are other cases where it can be useful to reuse a
model or a system interface. For example, many academic
plants are deployed with some sample software developed
in MATLAB or LabVIEW, to demonstrate the capabilities
of the system or to propose learning experiences.

The paper is organized as follows. Section 2 describes
briefly the creation of standard engineering simulations. In
Section 3 a communication protocol to connect engineering
software with an interactive human interface is presented.
Section 4 adapts the communication protocol to perform
remote operation of engineering simulations. Finally main
conclusions are discussed.

2. BUILDING SIMULATIONS
2.1 Owverview

Any interactive simulation that uses a model previously
created on an existing engineering software can be con-
ceptually separated on two differentiated components. The

first one is the system, a real process or a simulation
created with a standard engineering software that models
the process of interest. The second one is the interactive
view through which users can observe and manipulate the
system. The client application adds to the underlying (ex-
ternal) engineering application an upper layer that allows
students to interactively manipulate and visualize the re-
sponse of the system. The external application is controlled
by the client application and provides it data for visualiza-
tion. But, no matter what kind of software is being used,
there always are some common needs to communicate the
engineering system and the interactive view, such as the
initial configuration, a way to read/modify the value of
the variables or states (for visualization and manipulation)
and also, depending on the system, a way to control the ex-
ecution, pause, or more complex commands. These actions
can be abstracted from the particular implementation, and
captured into a generic interoperability protocol. Ideally,
the subscription to the protocol should allow a complete
decoupling between the two components (the system and
the view) in a bidirectional way: on the one hand, an
existent model or system can be accessed through different
views, for example, to carry out different learning experi-
ences on the same system or to present different visual-
ization depending on the kind of user. On the other hand,
an interactive view can be shared by different systems.
For example, to connect with different systems depending
on their time availability. Focusing on the interconnection
between MATLAB and EJS, one have to cope with several
problems. First, there are different approaches to control
MATLAB from Java, such as compiling the program with
Builder JA to create a Java wrapper, or use a third-party
library like JMatlink or matlabcontrol that allow to control
the MATLAB engine/GUI (see (Altman, 2012) for more
details). Then the EJS/Java code must be implemented
to solve the specific problem for the laboratory in devel-
opment. In case there is a need to change the component
on which the connection relies (due to compatibility issues,
a substitution of the engineering software, etc.), the EJS
application must be modified, requiring additional effort
to adapt the laboratory. Encapsulating all the interconnec-
tion issues into a reusable component, the development can
be rationalised, and only the components actually involved
in the change have to be adapted. The communication
protocol described in the next section shows a simple, but
powerful application programming interface (API) that
any engineering software should conform to, in order to
provide all the features required to effectively implement
the interoperate approach.

3. REMOTE INTEROPERABILITY PROTOCOL

In a common scenario, the client connects to the resource
and acquire basic information about the capabilities of the
system, such as: can I control the execution or only behold
the evolution of the system? what methods can I invoke?
which variables can I obtain from the system? and which
can I modify?. After the negotiation phase, the client has
obtained sufficient knowledge about the ways to interact
with the system. Taking a close look to the functionalities
that the engineering system must support, they can be
divided into different categories:

Download English Version:

https://daneshyari.com/en/article/710898

Download Persian Version:

https://daneshyari.com/article/710898

Daneshyari.com

https://daneshyari.com/en/article/710898
https://daneshyari.com/article/710898
https://daneshyari.com/

