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a b s t r a c t

Generalized cross validation (GCV) is one of the most important approaches used to estimate parameters
in the context of inverse problems and regularization techniques. A notable example is the determination
of the smoothness parameter in splines. When the data are generated by a state space model, like in
the spline case, efficient algorithms are available to evaluate the GCV score with complexity that scales
linearly in the data set size. However, these methods are not amenable to on-line applications since they
rely on forward and backward recursions. Hence, if the objective has been evaluated at time t−1 and new
data arrive at time t , then O(t) operations are needed to update the GCV score. In this paper we instead
show that the update cost isO(1), thus paving the way to the on-line use of GCV. This result is obtained by
deriving the novel GCV filter which extends the classical Kalman filter equations to efficiently propagate
the GCV score over time.We also illustrate applications of the new filter in the context of state estimation
and on-line regularized linear system identification.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear state space models assume the form

xk+1 = Akxk + ωk

yk = Ckxk + ek

where xk is the state at instant k, yk is the output, while ωk and
ek are random noises. The matrices Ak and Ck regulate the state
transition and the observation model at instant k. This kind of
models plays a central role in the analysis and design of discrete-
time systems (Kalman, 1960). Applications abound and include
tracking, navigation and biomedicine.

In on-line state estimation, the problem is the reconstruction
of the values of xk from measurements of yk collected over time.
When the matrices Ak and Ck and the noises covariances are
known, the optimal linear estimates are efficiently returned by
the classical Kalman filter (Anderson & Moore, 1979). However,
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in many circumstances there can be unknown model parameters
that also need to be inferred from data in an on-line manner,
e.g. variance components or entries of the transition/observation
matrices. One can interpret such parameters as additional states.
Then, the extended Kalman filter (Jazwinski, 1970) ormore sophis-
ticated stochastic techniques, such as particle filters and Markov
chain Monte Carlo (Andrieu, Doucet, & Holenstein, 2010; Frigola,
Lindsten, Schon, & Rasmussen, 2013; Gilks, Richardson, & Spiegel-
halter, 1996; Ninness & Henriksen, 2010), can be used to track the
filtered posterior. Another technique consists of propagating the
marginal likelihood of the unknownparameters via a bank of filters
(Anderson &Moore, 1979, Ch. 10). In this paper, we will show that
another viable alternative is the use of an approach known in the
literature as generalized cross validation (GCV) (Golub, Heath, &
Wahba, 1979).

In the literature of statistics and inverse problems, GCV is
widely used in off-line contexts to estimate unknown parameters
entering regularized estimators (Bertero, 1989; Tarantola, 2005;
Wahba, 1990). This approachwas initially used to tune the smooth-
ness parameter in ridge regression and smoothing splines (Golub et
al., 1979; Hoerl & Kennard, 1970; Rice, 1986). GCV is now also pop-
ular in machine learning, used to improve the generalization ca-
pability of regularized kernel-based approaches (Evgeniou, Pontil,
& Poggio, 2000; Schölkopf & Smola, 2001), such as regularization
networks, which contain spline regression as special case (Girosi,
Jones, & Poggio., 1995; Poggio & Girosi, 1990).

To introduce GCV in our state space context, we first recall
that smoothing splines are closely linked to state space models of
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m-fold integrated Wiener processes (Pillonetto & Chiuso, 2009);
then it appears natural to extend GCV to general state space mod-
els. To this end, assume that measurements yk have been collected
up to instant t and stacked in the vector Yt . Denote with Ŷt the
vector containing the optimal linear output estimate1 and use Ht
to denote the influence matrix satisfying

Ŷt = HtYt .

Then, the parameter estimates achieved by GCV minimize

GCVt =
St

t(1 − δt/t)2
, (2)

where St is the sum of squared residuals, i.e.

St = ∥Ŷt − Yt∥
2,

and δt are the degrees of freedom given by the trace of Ht , i.e.

δt = Tr(Ht ).

In the objective (2), the term St accounts for the goodness of fit
while δt assumes values on [0, t] and measures model complexity.
In fact, in nonparametric regularized estimation, the degrees of
freedom δt can be seen as the counterpart of the number of param-
eters entering a parametric model (Hastie, Tibshirani, & Friedman,
2001; MacKay, 1992; Pillonetto & Chiuso, 2015).

GCV is supported by important asymptotic results. Also, for
finite data set size it turns often out a good approximation of the
output mean squared error (Craven & Wahba, 1979). It is worth
stressing that such properties have been derivedwithout postulat-
ing the correctness of the prior models describing the output data
(Wahba, 1983, 1985). In a system identification perspective, this
means that GCV can compensate for possible modeling mismatch
affecting the state space description (Ljung, 2000).

Despite these nice features, the use of GCV within the control
community appears limited, in particular in on-line contexts. One
important reason is the following one. For state space models,
there exist efficient algorithmswhich, for a givenparameter vector,
return its GCV score with O(t) operations (Ansley & Kohn, 1987;
Kohn & Ansley, 1989), see also De Nicolao, Trecate, and Sparacino
(2000), Hutchinson and De Hoog (1985) and Silverman (1985) for
procedures dedicated to smoothing splines. But all of these tech-
niques are not suited to on-line computations since they involve
forward and backward recursions. Hence, if GCVt−1 is available
and new data arrive at time t , other O(t) operations are needed to
achieve GCVt . In this paper, we will instead show that the update
cost is O(1), thus paving the way to a more pervasive on-line use
of GCV. This result is obtained by deriving the novel GCV filter
which consists of an extension of the classical Kalman equations.
Thanks to it, one can run a bank of filters (possibly in parallel)
to efficiently propagate GCV over a grid of parameter values. This
makes the proposedGCV filter particularly suitable for applications
where ameasurementmodel admits a state space descriptionwith
dynamics depending on few parameters, see e.g. the next section
for an application in numerical differentiation. In this framework,
an implementation of the GCV filter via a bank of parallel filters
turns out computationally attractive.

The paper is organized as follows. In Section 2, first some addi-
tional notation is introduced. Then, the GCV filter is presented. Its
asymptotic properties are then discussed in Section 3. In Section 4
we illustrate some applications, including also smoothing splines
and on-line regularized linear system identificationwith the stable
spline kernel used as stochastic model for the impulse response
(Pillonetto & De Nicolao, 2010; Pillonetto, Dinuzzo, Chen, Nicolao,
& Ljung, 2014). Conclusions end the paper while the correctness of
the GCV filter is shown in Appendix.

1 The components of Ŷt are thus given by Cx̂k|t , where the smoothed state x̂k|t can
be obtained for any t with O(t) operations by a fixed-interval Kalman smoothing
filter (Ljung & Kailath, 1976; Rauch, Tung, & Striebel, 1965).

2. The GCV filter

2.1. State space model

First, we provide full details about our measurements model.
We use x ∼ (a, b) to denote a random vector x with mean a and
covariance matrix b. Then, our state space model is defined by

xk+1 = Akxk + ωk (3a)
yk = Ckxk + ek, k = 1, 2, . . . (3b)
x1 ∼ (µ, P0) (3c)
ωk ∼ (0,Qk) (3d)
ek ∼ (0, γ ) (3e)

where the initial condition x1 and all the noises {ωk, ek}k=1,2,... are
mutually uncorrelated. We do not specify any particular distri-
bution for these variables, since the GCV score does not depend
on the particular noise distribution.2 If x1, ωk, ek are Gaussian,
then the Kalman filter provides the optimal state estimate in the
mean-square sense. In the other cases, the Kalman filter corre-
sponds to the best linear state estimator (Anderson&Moore, 1979).
In addition, just to simplify notation the measurements yk are
assumed scalar, so that γ represents the noise variance.

Weassume that someof the parameters in (3)maybeunknown,
or could enter Ak, Bk,Qk and P0; however, we do not stress this
possible dependence to make the formulas more readable. The
matrix P0 is assumed to be independent of γ . Such parameter
is typically unknown, being connected to the ratio between the
measurement noise variance and the variance of the driving noise.
It corresponds to the regularization parameter in the smoothing-
splines context described in the example below.

Example 1 (Smoothing Splines (Pillonetto & Saccomani, 2006)).
Function estimation and numerical differentiation are often re-
quired in various applications. These include also input reconstruc-
tion in nonlinear dynamic systems as described e.g. in Pillonetto
and Saccomani (2006). Assume that one is interested in determin-
ing the first m derivatives of a continuous-time signal measured
with non-uniform sampling periods Tk. Modeling the signal as an
m-th fold integrated Wiener process one obtains the stochastic
interpretation of the mth order smoothing splines (Wahba, 1990).
In particular, one can use (3) to represent the signal dynamics as
follows

Ak =
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,

[Qk]ij =
T i+j−1
k

(i − 1)!(j − 1)!(i + j − 1)
.

Such model depends on the measurement noise variance γ , mak-
ing this application particularly suited for the GCV filter.

2.2. The GCV filter

The GCV filter equations are now reported. Below, x̂k denotes
the optimal linear one-step ahead state prediction having covari-

2 Of course, GCV may result not effective if the noises are highly non-Gaussian.
Different approaches, like particle filters, should instead be used if linear estimators
perform poorly due e.g. to multimodal noise distributions.
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