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a b s t r a c t

For population systems modeled by age-structured hyperbolic partial differential equations (PDEs) that
are bilinear in the input and evolve with a positive-valued infinite-dimensional state, global stabilization
of constant yield set points was achieved in prior work. Seasonal demands in biotechnological production
processes give rise to time-varying yield references. For the proposed control objective aiming at a
global attractivity of desired yield trajectories, multiple non-standard features have to be considered:
a non-local boundary condition, a PDE state restricted to the positive orthant of the function space and
arbitrary restrictive but physically meaningful input constraints. Moreover, we provide Control Lyapunov
Functionals ensuring an exponentially fast attraction of adequate reference trajectories. To achieve this
goal,wemakeuse of the relation between first-order hyperbolic PDEs and integral delay equations leading
to a decoupling of the input-dependent dynamics and the infinite-dimensional internal one. Furthermore,
the dynamic control structure does not necessitate exact knowledge of the model parameters or online
measurements of the age-profile.With a Galerkin-based numerical simulation scheme using the key ideas
of the Karhunen–Loève-decomposition, we demonstrate the controller’s performance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We design an asymptotically tracking control for age-
structured chemostats modeled by hyperbolic partial differential
equations (PDEs) with a bilinearly acting input. Based on our prior
work on the stabilization of constant yield set points, we guaran-
tee global attractivity of output trajectories with an exponential
convergence rate. In addition, we developed an efficient numer-
ical scheme based on Galerkin-methods, which ensures accurate
asymptotic properties.

Motivation. In the context of mathematical biology and demog-
raphy age-structured continuous-time models are a common way
of describing the evolution of a certain population with respect
to the independent variables of age and time (Boucekkine, Hri-
tonenkoand, & Yatsenko, 2013; Brauer & Castillo-Chavez, 2001).
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Continuous bioreactors encountered in bioengineering and phar-
maceutical research are usually modeled by ordinary differential
equations (ODEs) (Robledo, Grognard, & Gouzé, 2012; Smith &
Waltman, 1995). Since multiple ecological concepts like resistance
and resilience of ecosystems are closely related to the framework
of robustness in system theory, these aspects have been stud-
ied rigorously (Ellermeyer, Pilyugin, & Redheffer, 2001; Karafyl-
lis, Kravaris, & Kalogerakis, 2009). An analysis of the ergodicity
problem is given in Inaba (1988a, b). Moreover, for age-structured
models there is an extensive literature on optimal control prob-
lems (Boucekkine et al., 2013; Feichtinger, Tragler, & Veliov, 2003)
as well as on the stability of certain PDE models (Robledo et al.,
2012).

The model. Throughout this paper we focus on the McKendrick–
vonFoerster PDE, which is introduced in Section 2. For this setting
the dilution rate, which is the ratio of the volumetric flow to
the constant volume in the growth chamber, is a natural control
variable (Smith & Waltman, 1995; Toth & Kot, 2006). On the other
hand, the output is chosen as a weighted integral of the popula-
tion’s age-distribution. As a result, it is possible to represent all
products which are proportional to the overall population as well
as possibly age-dependent synthesized products. Furthermore, the
dependence of the microorganisms’ growth rate on the nutrient
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concentration in the bioreactor is not captured in the model and
we hence assume that the nutrient concentration is maintained
constant.

Time-varying yields. Having a biomass inmindwhich is used for the
production of antibiotics in pharmaceutical industry, the relevance
of the trajectory tracking issue can be elucidated in a demonstra-
tive way. Choosing the yield of an antibiotic as a valid output, its
production rate is subjected to external influences like seasonal
effects or the current demand. With the prediction of these exoge-
nous factors on an adequate time scale it is possible to determine
an optimal production rate governing desired yield trajectories.
Due to the fact that a periodic reactor operation may produce
a higher yield than the yield achieved by an equilibrium point
(Bittanti, Fronza, & Guardabassi, 1973), a special focus is placed
on periodical reference trajectories. Beyond this, if the considered
bioreactor is a part of a cascadedprocess, the tracking of predefined
trajectories makes it possible to accelerate starting processes and
changes of operating points.

Results of the paper. The present paper extends our prior
work (Karafyllis & Krstic, 2016), which focused on the global sta-
bilization of desired equilibrium points of the system class under
consideration. We now aim at ensuring the global attractivity
of desired yield trajectories and therefore generalize the already
established concepts, such that constant set point are included as a
special case. For this purpose, a definition of the control objective is
given in Section 3. The suggested approach exploits the relation of
first-order hyperbolic PDEs to delaymodels in the sense of integral
delay equations (IDEs, see Karafyllis & Krstic, 2014). More specif-
ically, we decompose the PDE problem to an input-dependent
finite-dimensional subsystem and an autonomous delay subsys-
tem which is correlated to the microorganisms’ reproduction. For
special cases of integral kernels we are in the position to construct
Control Lyapunov Functionals (CLFs).

In contrast to the prior work, we use a two-degrees-of-
freedom (DOF) control structure with a separate feedforward
control part evoked by the reference trajectory (Meurer & Kugi,
2009), as introduced in Section 4. In this case the feedforward
controller does not solely enhance the tracking behavior of the
closed loop, but plays an essential role in the overall attractivity
concept. The consideration of input constraints is a crucial issue
of the present control design assuming a bounded interval for the
accessible dilution rate. Moreover, our output-feedback controller
does not demand online measurements of the population’s entire
age-distribution. Even the knowledge of exact system parameters
is not necessary, since the controller handles uncertainties in a
robust way. In addition, it is important to guarantee that the PDE
state, which represents the population density, remains positive
at all times and ages. This fact, in conjunction with a control input
directly acting on the whole profile (not simply on the boundary),
differentiates our work to other control problems of hyperbolic
PDEs (Bastin&Coron, 2011; Coron, Vazquez, Krstic, & Bastin, 2013).

Lastly, we provide simulation results of the closed-loop system
in Section 6 with a Galerkin-based simulation scheme, which con-
serves important systemproperties even at low orders and enables
independent age and time discretizations.

Notation.

• The set R+ denotes all positive-valued real numbers, R+

0 all
non-negative real numbers.

• The inner product of L2 is denoted ⟨f , g⟩ :=
∫ A
0 f (a)g(a)da

where f , g ∈ L2([0, A]).
• ∥f (a)∥∞ = maxa∈[0,A]|f (a)| is the maximum- resp. L∞-norm

for f ∈ C 0([0, A]).

• Given the functions f : R+
× X → R , z : R+

→ X with the
metric space X , we define the right temporal Dini-derivative
ḟ +(t, z(t)) := limh→0+

f (t+h,z(t+h))−f (t,z(t))
h .

• K∞ is the class of all strictly increasing, unbounded func-
tions κ ∈ C 0(R+

0 ;R+

0 ) with κ(0) = 0.
• The saturation function with respect to f ∈ [Dmin,Dmax] is

defined sat(f ) = min(Dmax,max(Dmin, f )); other intervals
are explicitly denoted as an index.

• For any S ⊆ R and A > 0, PC 1([0, A]; S) denotes the class
of all functions f (a) ∈ C 0([0, A]; S) for which there exists a
finite (or empty) set B ⊆ (0, A) such that: (i) the derivative
f ′(a) exists at every a ∈ (0, A)\B and is a continuous function
on (0, A) \ B , (ii) all meaningful right and left limits of f ′(a)
when a tends to a point in B ∪ {0, A} exist and are finite.

2. Age-structured population models

Consider the McKendrick–vonFoerster PDE (1) valid in the age-
time domain (a, t) ∈ (0, A) × (0,∞)
∂x(a, t)
∂t

+
∂x(a, t)
∂a

= −[µ(a) + D(t)]x(a, t) (1)

x(0, t) =

∫ A

0
k(a)x(a, t)da (2)

x(a, 0) = x0(a) (3)

which describes the evolution of the population density x : [0, A]×

[0,∞) → R+ as a part of an initial–boundary value problem (IBVP)
on the same domain with an arbitrary large but finite maximum
reproductive age A > 0. Strictly speaking, the state (x[t])(a) =

x(a, t) describes the density of the overall population which has
reached a specific age a at a certain time t . In addition, the func-
tion µ(a) denotes the age-dependent mortality rate and D(t) the
dilution rate which is the control input. In particular, the non-local
boundary condition (BC) (2) is valid for t ≥ 0 and models the
production of new-born individuals x(0, t) determined by the birth
modulus resp. the kernel k(a). Furthermore, Eq. (3) is the initial
condition, i.e. the initial distribution of the population density in
the age-domain [0, A] at t = 0. In addition, the output is defined
by the equation

y(t) =

∫ A

0
p(a)x(a, t)da, (4)

which takes the possibly age-dependent production rate y(t) of a
specific (bio)chemical species into account. For instance, we have
the overall population with p(a) = 1.

The distributed parameter system Σx: (1)–(4) with input D(t)
and output y(t) is of bilinear single-input–single-output type. Sub-
sequently, we introduce three assumptions to guarantee the exis-
tence of a meaningful unique solution of (1)–(2) aware of the state
and input constraints (see also Karafyllis & Krstic, 2016):

(A1) The parameters functions are restricted to k, p ∈ P andµ ∈

C 0([0, A];R+

0 ), where P := {f ∈ PC 1([0, A];R+

0 )
⏐⏐ ⟨1, f ⟩ >

0}.
(A2) The control D(t) takes values in [Dmin,Dmax] ⊂ R+

0 , where
Dmin < Dmax.

(A3) The initial condition (IC) (3) is compatible with (2), i.e. x0 ∈

X := {f ∈ PC 1([0, A];R+)
⏐⏐ f (0) = ⟨k, f ⟩ > 0}.

3. Control objective and PDE decomposition

The asymptotic tracking of a reference trajectory yref(t) with
respect to the output y(t) given by (4) defines the key objective
of the contribution. For designing an asymptotic tracking control
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