
Please cite this article in press as: Bof, N., et al., Is ADMM always faster than Average Consensus?. Automatica (2018), https://doi.org/10.1016/j.automatica.2018.01.009.

Automatica () –

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Technical communique

Is ADMM always faster than Average Consensus?✩

Nicoletta Bof, Ruggero Carli *, Luca Schenato
Department of Information Engineering, University of Padova, via Gradenigo 6/a, 35131, Padova, Italy

a r t i c l e i n f o

Article history:
Received 28 March 2017
Received in revised form 6 September 2017
Accepted 27 November 2017
Available online xxxx

Keywords:
Distributed control
Optimization problems
Average Consensus
ADMM

a b s t r a c t

There is a common belief that the ADMM, a popular algorithm employed for distributed convex optimiza-
tion over graphs, is faster than another distributed algorithm typically referred as the Average Consensus.
This belief is based on the observation that the ratio of the number of iterations necessary to achieve a
desired error with respect to the optimal solution of the ADMM vs the Average Consensus goes to zero as
the graph becomes larger or less connected. In this work, we provide a closed form expression for the rate
of ADMM as a function of the essential spectral radius of the graph, which is a measure of connectivity
of the graph, for scalar quadratic cost functions with identical curvature, and we show that its rate of
convergence can be slower than the Average Consensus when the graph is highly connected. Moreover,
via extensive simulations, we show that ADMM performance, differently from the average consensus,
rapidly degrade as the cost functions become skewed, thus making the latter approach competitive also
for sparse graphs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the appearance of multi-agent engineering ap-
plications such as Internet-of-Things,Wireless Sensor andActuator
Networks, Smart Energy Grids has stemmed a revival interest in
distributed algorithms and in particular distributed convex opti-
mization. Among the very many algorithms available, two of them
have attracted the attention of many communities in the past
decade, namely the Alternating Direction Method of Multipliers, in
short ADMM, and the Average Consensus (see the surveys Boyd,
Parikh, Chu, Peleato, & Eckstein, 2011 and Garin & Schenato, 2010,
for the former and the latter one, respectively). Such interest stands
on their wide-range applicability, easy implementation for peer-
to-peer architectures, and experimental validations. A large body
of literature has appeared regarding the analysis of these two algo-
rithms in terms of rate of convergence, asynchronous implementa-
tion and robustness to random communication delays and packet
losses. In particular, for what concerns the rate of convergence
in a distributed scenario, some notable works include (Iutzeler,
Bianchi, Ciblat, & Hachem, 2016; Makhdoumi & Ozdaglar, 2016;
Teixeira, Ghadimi, Shames, Sandberg, & Johansson, 2016) for the
ADMMand Fagnani and Zampieri (2008) and Xiao and Boyd (2004)

✩ Thematerial in this paper was partially presented at the 15th annual European
Control Conference, June 29–July 1, 2016, Aalborg, Denmark. This paperwas recom-
mended for publication in revised form by Associate Editor A. Pedro Aguiar under
the direction of Editor André L. Tits.

* Corresponding author.
E-mail addresses: bofnicol@dei.unipd.it (N. Bof), carlirug@dei.unipd.it

(R. Carli), schenato@dei.unipd.it (L. Schenato).

for the Average Consensus. Theseworks convey the common belief
that ADMM is faster than the Average Consensus but a vis-a-
vis comparison between these two algorithms is not provided. A
notable exception is given by Erseghe, Zennaro, Dall’Anese, and
Vangelista (2011) that compared ADMM against Average Consen-
sus in the specific scenariowhen the convexproblem tobe solved is
the computation of an arithmetic average. In particular the authors
provide expressions for the rate of convergence of the algorithms
and showed that ADMMis faster thanAverage consensus for sparse
graphs.

The contribution of this work is twofold. The first is a more
compact closed form expression for the rate of convergence of
ADMM using a different mathematical machinery than Erseghe
et al. (2011), showing that, for highly connected graphs and scalar
quadratic cost functions, the Average Consensus algorithm is faster
than ADMM.1 The second contribution is the study of more gen-
eral multi-variable weighted least-squares problem via numerical
simulations which shows that the rate expression obtained for the
scalar average, is an optimistic lower bound on the convergence
rate of ADMM, since the skewness of the cost function may really
compromise the speed of ADMM.

2. Notation and problem formulation

We consider a network G = (V, E) of N agents which can
communicate among themselves.We only consider undirected and

1 A preliminary version of this result without proof was presented in Bof, Carli,
and Schenato (2016).

https://doi.org/10.1016/j.automatica.2018.01.009
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.01.009
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:bofnicol@dei.unipd.it
mailto:carlirug@dei.unipd.it
mailto:schenato@dei.unipd.it
https://doi.org/10.1016/j.automatica.2018.01.009

Please cite this article in press as: Bof, N., et al., Is ADMM always faster than Average Consensus?. Automatica (2018), https://doi.org/10.1016/j.automatica.2018.01.009.

2 N. Bof et al. / Automatica () –

connected graphs, with all the nodes having a self loop. Given a node
i ∈ V , the set Ni contains the neighbours of i (i included), that is
Ni = {j | j ∈ V , (i, j) ∈ E}, and |Ni| denotes the cardinality of Ni.
The adjacencymatrixAG of graphG is anN×N matrixwith [AG]ij =

1 if (i, j) ∈ E and 0 otherwise, where [AG]ij denotes the element
in position (i, j) of matrix AG . A matrix P ∈ RN×N is stochastic if
P1N = 1N , where1N is the all-ones vector of dimensionN . Amatrix
Q ∈ RN×N is said to be consistent with graph G if [Q]ij > 0 ⇔ (i, j)
belongs to E . Since G is connected and has all the self loops, Q is
primitive, and so [Q N

]ij > 0 for all i, j. Since G is an undirected
graph, it is possible to find a stochastic matrix P consistent with G
which is also symmetric, and sowith eigenvaluesλ1, . . . , λN which
are real and for which it holds λ1 = 1 > λ2 ≥ · · · ≥ λN > −1.
The essential spectral radius (ESR) ρ of such a matrix corresponds
to max {|λ2|, |λN |} < 1, and we indicate with k̂ the index (equal to
2 or to N) such that |λk̂| = ρ.

Each agent is endowed with a quadratic cost function

fi : Rp
→ R, fi(x) =

1
2
∥x − θi∥

2
Ai , (1)

where, for i = 1, . . . ,N , Ai ∈ Rp×p is a positive definite matrix,
θi ∈ Rp, and ∥x∥2

A = x⊤Ax. Consider now the global cost function
f : Rp

→ R, which is the sum of the cost functions (1) of each
agent, f (x) =

∑N
i=1fi(x). The aim of the agents is to collaborate

in order to find the minimizer x∗
∈ Rp of f (x) in a distributed

way, namely, communicating with their respective neighbours
defined by G. This problem corresponds to a distributed weighted
least squareswhich arises inmany applications (Carron, Todescato,
Carli, & Schenato, 2014; Garin & Schenato, 2010; Xiao & Boyd,
2004). Each agent has therefore to solve the following optimization
problem, which has a closed form solution

x∗
= argmin

x
f (x) =

(
1
N

N∑
i=1

Ai

)−1 (
1
N

N∑
i=1

Aiθi

)
. (2)

The previous problem can be solved in a distributed fashion via any
algorithmable to compute an average, for exampleAverage Consen-
sus. An alternative approach is to augment the input domain of (2)
and to add additional constraints, and then solve the corresponding
problem via Lagrangian-based algorithms such as ADMM.

3. Average Consensus

A popular algorithm to compute an average is the Average
Consensus. We introduce this algorithm for the case in which the
agents have to evaluate the mean of a set of scalars. The algorithm
is obtained by constructing a symmetric stochastic matrix P con-
sistent with the communication graph G. Since P is symmetric and
primitive, due to Perron–Frobenius theorem, we have

lim
t→∞

P t
=

1
N
1N1N

⊤. (3)

To obtain themean of the elements of a vectorm ∈ RN , it is enough
to apply the following iterative scheme{
x(t + 1) = Px(t)
x(0) = m

, t ≥ 0.

The ith element of vector x(t), i.e., xi(t), contains the average of m
estimated at time t by the ith agent.

Introducing the quantities m̄ =
1
N

∑N
i=1mi and x∗

= m̄1N ,
expression in (3) implies that limt→∞x(t) = x∗.

The convergence rate of this algorithm, denoted as ρC , is deter-
mined by the ESR of matrix P , see Olshevsky and Tsitsiklis (2009).
In particular, for a positive constant β depending only on x(0), it
holds

∥x∗
− x(t)∥ ≤ βρt

C , ∀t ≥ 0.

Here, matrices P are built via the Metropolis–Hastings weights
(MHW), Boyd, Diaconis, and Xiao (2004), since they can be calcu-
lated locally (each agent only needing the number of its neighbours
and their degree). Conversely, building P to have minimal ESR
requires the solution of a centralized optimization problem (Boyd
et al., 2004). Usually, with MHW, dense graphs far from being
bipartite (e.g. random geometric graphswith high distance thresh-
old as in Section 5, or also graphs with many randomly selected
edges Boyd et al., 2004) have ρC close to 0 (and exactly 0 if G
is complete), while for sparse graphs ρC tends to 1. We denote
graphs whose corresponding stochastic matrix has a small ESR
as well-connected. Problem (2) can be solved by running p2 + p
Average Consensus algorithms, one for each element of Ai and Aiθi.
Interestingly, the rate of convergence is independent of the Ai’s and
θi’s, and it solely depends on the ESR.

4. ADMM

To solve (2) in a distributed way using ADMM, the problem has
to be recast defining suitable equality constraints. In particular,
with the introduction of the auxiliary vectors zi ∈ Rp, i = 1,
. . . ,N, the problem becomes⎧⎪⎨⎪⎩argmin

xi,zi

N∑
i=1

fi(xi)

subject to xi = zj, ∀j ∈ Ni, ∀i ∈ {1, . . . ,N} .

If x∗

1, . . . , x
∗

N are the solution of the problem above, the constraints
assure that x∗

i = x∗

j for all i and j, and so x∗

i = x∗ for all i. ADMM
exploits the augmented Lagrangian with Lagrangian multipliers
λij ∈ Rp and penalty parameters wij > 0, i, j = 1, . . . ,N , (i, j) ∈ E:

L =

N∑
i=1

1
2
∥xi − θi∥

2
Ai +

N∑
i=1

∑
j∈Ni

λ
⊤

ij (xi − zj)

+
1
2

N∑
i=1

∑
j∈Ni

wij∥xi − zj∥2.

Differently from standard ADMM, we do not impose wij = w̄ for
all i, j = 1, . . . ,N (see Erseghe et al., 2011), and we collect all
the wij in matrix W ∈ RN×N , with [W]ij = 0 if (i, j) ̸∈ E . The
standard updates of ADMM (Boyd et al., 2011) are obtained from
the Lagrangian imposing first order optimality condition on the xi’s
and zi’s and then using an ascent step for variables λij’s,

xi(t + 1) =
(
Ai +

∑
j∈Ni

wijIp
)−1(Aiθi +

∑
j∈Ni

(wijzj(t) − λij(t))
)
, (4)

zj(t + 1) =

∑
i∈Nj

wijxi(t + 1) +
∑

i∈Nj
λij(t)∑

i∈Nj
wij

, (5)

λij(t + 1) = λij(t) + wij
(
xi(t + 1) − zj(t + 1)

)
, (6)

where IN is the identity matrix of dimension N . This algorithm
converges for any choice of initial conditions for xi(0), zi(0) and
λij(0), and for any choice of wij > 0 for all (i, j) ∈ E . However, its
convergence rate strongly depends on the values of the matrices
Ai’s and the weights wij. In the following, under a simplified scalar
scenario and a particular choice for W , we derive a closed form
expression for the best achievable rate of convergence.

4.1. Special case: Ai = ā

We now provide an analytical result for the convergence rate of
ADMM for scalar quadratic functions under the assumption Ai = ā,
ā ∈ R. This corresponds to distributively find the average of N
numbers θi (collected in vector θ ∈ RN), since the optimizer of

Download English Version:

https://daneshyari.com/en/article/7108996

Download Persian Version:

https://daneshyari.com/article/7108996

Daneshyari.com

https://daneshyari.com/en/article/7108996
https://daneshyari.com/article/7108996
https://daneshyari.com

