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a b s t r a c t

In this paper, a solution to the problem of rest-to-rest three-axis attitude reorientation of a fully actuated
rigid body undermultiple attitude-constraint zones and angular velocity limits is presented. Based on the
unit-quaternion parameterized attitude-constrained zones, a quadratic potential function is developed
with a global minimum locating at the desired attitude and high potential closing to the constrained
zones. In addition, to limit the magnitude of the angular velocity, another logarithmic potential function
is also designed. Using these two potential functions and sliding mode control technique, a nonlinear
attitude control law is obtained to guarantee asymptotic convergence of the closed-loop system with
consideration of attitude and angular rate constraints, and external disturbances. The effectiveness of the
constrained attitude control method is demonstrated through numerical simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Rigid-body attitude control is one of the most widely studied
research fields in control literature. Extensive nonlinear control
algorithms have been proposed for three-axis attitude control
problem of a fully actuated rigid body, such as sliding mode con-
trol (Boskovic, Li, & Mehra, 2001; Lu & Xia, 2014; Shen, Wang, Zhu,
& Poh, 2015b), backstepping control (Kristiansen, Nicklasson, &
Gravdahl, 2008), adaptive control (di Gennaro, 2003; Shen, Wang,
Zhu, & Poh, 2015a), hybrid control (de Angelis, Giulietti, de Ruiter,
& Avanzini, 2016), and inverse optimal control (Krstic & Tsiotras,
1999; Luo, Chu, & Ling, 2005). For the case of underactuated dy-
namical systems, several approaches of solving the stabilization
problem have also been developed, such as Avanzini, de Angelis,
& Giulietti (2014), Gasagrandea, Astolfi, & Parisini (2008), Li, Yan,
& Shi (2017) and Morin & Samson (1997), just to name a few.
Recently, multiple application-specific constraints in rigid-body
attitude maneuver have attracted a great deal of interest. For rigid
spacecraft implementations, instruments equipped on the space-
craft are required to point their boresight along a target direction
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while keeping away from direct exposure to sunlight or other
bright objects (Lee & Mesbahi, 2014). For example, the infrared
telescopes may slew from one direction to another without direct
exposure to the sun vector or other infrared bright regions in space
(McInnes, 1994). This kind of constraint is regarded as attitude
constraint. Another constraint to be taken into account is angular
rate constraint caused by the saturation limitation of low-rate
gyro or mission specification requirement. A practical example is
X-ray Timing Explorer (XTE) spacecraft that is required to maneu-
ver within the saturation limit of rate gyros (Wie & Lu, 1995). In
view of these practical considerations, this paper studies the three-
axis reorientation problem of a fully actuated rigid body subject to
both of attitude and angular rate constraints.

Methods dealing with attitude constrained rigid-body reorien-
tation problem can be generalized into two main categories: path
planning methods and potential function methods. In literature,
several attitude path planning strategies (de Angelis, Giulietti, &
Avanzini, 2015; Frazzoli, Dahleh, Feron, & Kornfeld, 2001; Hablani,
1999; Kjellberg & Lightsey, 2013) have been developed to find
the admissible rotation trajectory. However, these methods have
a complex structure which gives rise to demanding computation
burden (Avanzini, Radice, & Ali, 2009; Lee & Mesbahi, 2014). Po-
tential function methods utilize the artificial potential to model
the admissible attitude path. In general, the developed artificial
potential is formulated with a global attractive minimum at the
desired orientation and high potential closing to the exclusion
zones. Then, the potential function is incorporated in the attitude
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controller design to stabilize the system while satisfying atti-
tude constraints. Since this kind of approach is analytical without
changing the overall structure of the attitude control software or
hardware, it is suitable for on-board computation and provides
flexible autonomous operations. In McInnes (1994), the potential
function was formulated in the form of Gaussian functions, and
an attitude controller was developed to converge the attitude
without violating pre-defined pointing constraints. However, since
Euler angles were used to represent attitude in McInnes (1994),
the proposed control algorithm may suffer from singularity. In
Rafal and Piotr (2005), an attitude control law was synthesized
applying the potential function method to prevent the camera
from exposing to the Sun light directly during the slew maneuver.
In Lee and Mesbahi (2014), a convex logarithmic barrier potential
was formulated in the unit-quaternion space, and the backstep-
ping technique based controllers were proposed to ensure attitude
convergence and forbidden attitude avoidance. In Shen, Yue, and
Goh (2017), a velocity-free attitude controller was developed for a
flexible spacecraft in the presence of attitude constraints.

Another challenge in practical rigid-body attitude control is the
constraint on angular rate. To ensure that angular rate is always
within a pre-defined bound determined by saturation limit of rate
gyros or performance requirements, several methods have been
proposed. InWie and Lu (1995), a quaternion feedback control law
was developed for the near-minimum-time eigenaxis reorienta-
tion problem of the XTE spacecraft with consideration of angular
velocity and control torque constraints. Although this approach is
commonly used in practical spacecraft mission, a rigorous stability
proof of the closed-loop system is not given. In Verbin, Lappas,
and Ben-Asher (2011), a time-efficient angular steering law was
developed to handle several state constraints, where the angular
rate and acceleration limits were determined by a braking curve-
like angular velocity trajectory. InHu, Li, and Zhang (2016), a robust
nonlinear controller incorporating a control allocation schemewas
proposed for a rigid spacecraft under angular velocity constraints
and actuator saturation, where a logarithmic barrier potential
function was developed. In Hu, Li, and Friswell (2015), an atti-
tude stabilization strategy was proposed to solve the unwinding
problem for a rigid spacecraft in the presence of angular velocity
constraints.

In this paper, to handle attitude constraints and angular rate
limitations simultaneously in attitude maneuver, an adaptive atti-
tude controller based on two different potential functions defined
in attitude orientation and angular velocity domain is presented.
We prove that the proposed attitude controller is able to achieve
asymptotic stabilization of the closed-loop system, while attitude
and angular velocity constraints are satisfied concurrently. The
main contributions of this study are summarized as the following
three key-points:

(1) Comparing with aforementioned literatures (Hu et al., 2015,
2016; Lee & Mesbahi, 2014; McInnes, 1994; Rafal & Piotr,
2005; Shen et al., 2017; Verbin et al., 2011; Wie & Lu, 1995),
this study presents a solution to deal with both attitude
constraints and angular rate limits in attitude control.

(2) A logarithmic potential function in terms of sliding vector
is first proposed, whose largest potential is placed at the
maximal angular velocity respectively. Based on this poten-
tial function, angular velocity constraint is satisfied through
limiting the magnitude of the sliding vector.

(3) The proposed two potential functions for attitude and an-
gular velocity are smooth and strictly convex with global
minima located at the desired attitude and angular velocity.
This ensures that attitude and angular velocity could be
stabilized to the global minima while avoiding multiple
attitude constrained zones and limiting the magnitude of
angular velocity.

The remainder of this paper is organized as follows. In Section 2,
unit-quaternion is introduced for attitude representation, and
rigid-body dynamics and modeling of attitude-constraint zones as
well as angular rate limits are described. In Section 3, two potential
functions are designed to describe the attitude constrained zones
and angular velocity limits, respectively. Then, an adaptive attitude
control law using sliding mode control technique is developed to
guarantee asymptotic stability. The simulation results are given in
Section 4, followed by conclusions in Section 5.

2. Preliminaries

In this paper, the unit-quaternion representation is used to
describe the orientation of a rigid body. The set of unit quaternion
Qu is given by

Qu = {Q = [qT q0]T ∈ R3
× R | qTq + q20 = 1} (1)

where q and q0 denote the vector part and the scalar part of a
quaternion, respectively. The unit-quaternion conjugate or inverse
is defined as Q ∗

= [−qT q0]T . The properties of quaternion can be
found in Chou (1992).

2.1. Kinematics equation

The spacecraft kinematics in terms of the unit quaternion is
given by Shuster (1993)

Q̇ =
1
2
Q ⊗ ν(ω) =

1
2

[
S(q) + q0I3

−qT

]
ω (2)

where ω ∈ R3 is the inertial angular velocity vector of the space-
craft with respect to an inertial frame I and expressed in the body
frame B, the notation ‘‘⊗’’ denotes the quaternion multiplication
operator, the function ν: R3

→ R4 is defined as the mapping
ν(ω) = [ωT 0]T , and the matrix S(x) ∈ R3×3 is a skew-symmetric
matrix satisfying S(x)y = x× y for any vectors x, y ∈ R3, and ‘‘×’’
denotes vector cross product.

Let Qd ∈ Qu denote the desired attitude. The unit-quaternion
error Qe = [qe1 qe2 qe3 qe0]T = [qT

e qe0]T ∈ Qu is given by Qe =

Q ∗

d ⊗ Q = [qT
e qe0]T . Let ωd denote the desired angular velocity

in the desired reference frame N . Since the rest-to-rest attitude
maneuver is considered in this paper, the relative angular velocity
defined asωe = ω−R(Qe)Tωd is simplified toωe = ω, whereR(Qe)
is Qe related rotation matrix defined as R(Qe) = (q2e0 − qT

e qe)I3 +

2qeqT
e − 2qe0S(qe) (Sidi, 1997) . Then, the kinematics represented

by unit-quaternion error is described as (Shuster, 1993)

Q̇e =
1
2
Qe ⊗ ν(ωe) =

1
2

[
S(qe) + qe0I3

−qT
e

]
ω. (3)

2.2. Rigid-body dynamics

The dynamics for the attitude motion of a rigid body is ex-
pressed by the following equations (Sidi, 1997):

J ω̇ = −S(ω)Jω + τ + d (4)

where J ∈ R3×3 denotes the positive definite inertia matrix of a
rigid body, τ ∈ R3 denotes the control torque about the body axes,
d ∈ R3 denotes the external disturbances. To design the attitude
controller, a sliding vector s = [s1, s2, s3]T ∈ R3 is given by

s = ω + kqe (5)

where k is a positive constant. Consequently, the attitude dynamics
in terms of the sliding vector can be written as

J ṡ = f (ω,Qe) + τ + d (6)

where the nonlinear term f (ω,Qe) = −S(ω)Jω +
k
2 (S(qe) + qe0I3)

ω.
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