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a b s t r a c t

In this paper we consider convergence rate problems for stochastic strongly-convex optimization in the
non-Euclidean sense with a constraint set over a time-varying multi-agent network. We propose two
efficient non-Euclidean stochastic subgradient descent algorithms based on the Bregman divergence as
distance-measuring function rather than the Euclidean distances that were employed by the standard
distributed stochastic projected subgradient algorithms. For distributed optimization of non-smooth and
strongly convex functions whose only stochastic subgradients are available, the first algorithm recovers
the best previous known rate of O(ln(T )/T ) (where T is the total number of iterations). The second
algorithm is an epoch variant of the first algorithm that attains the optimal convergence rate of O(1/T ),
matching that of the best previously known centralized stochastic subgradient algorithm. Finally, we
report some simulation results to illustrate the proposed algorithms.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have witnessed a growing interest in developing
distributed subgradient algorithms for solving convex constrained
optimization problem, where the objective function is the sum of
the local convex objective functions of nodes in a network (see,
e.g. Lin, Ren, & Song, 2016; Nedić, Ozdaglar, & Parrilo, 2010; Zhu
& Martínez, 2012), due to their widespread applications including
sensor networks (see, e.g. Shi, Ling, Wu, & Yin, 2015), and smart
grid (see, e.g. Chang, Nedić, & Scaglione, 2014; Yi, Hong, & Liu,
2016), to name a few.

Strong convexity has been widely studied in convex optimiza-
tion, because strongly convex cost functions can be easily found in
a variety of engineering application domains like sensor networks
and smart grids and strongly convex properties are actively used
in regularization methods. Take the ridge regression problem as
an example, where the objective function consists of the strongly
convex Tikhonov regularization term for some performance im-
provement in optimization computation (see, e.g. Shalev-Shwartz
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& Ben-David, 2014). In light of the increasing attention to dis-
tributed optimization, various distributed designs for optimizing
strongly convex functions (in the Euclidean sense) have been pro-
posed in the literature (see Nedić & Olshevsky, 2016 and Tsianos
& Rabbat, 2012), due to its wide application in many practical
fields and its potential to provide better guarantees of convergence
performance.

Many algorithms have been developed over the past years to
solve distributed convex optimization problems (see, e.g. Chen
& Sayed, 2012; Kia, Cortés, & Martínez, 2015; Liu, Qiu, & Xie,
2014; Lu, Tang, Regier, & Bow, 2011; Ram, Nedić, & Veeravalli,
2010; Yuan, Ho, & Hong, 2016; Yuan, Ho, & Xu, 2016). Such al-
gorithms require only the first-order information of the objec-
tive functions and Euclidean projection onto the constraint set.
This makes the algorithms attractive for large-scale optimization
problems. Specifically, recently an O(ln T/

√
T ) rate of convergence

has been established in Nedić and Olshevsky (2015). However, the
aforementioned algorithms are inherently Euclidean, in the sense
that they rely on measuring distances based on Euclidean norms.
This means that it is challenging or infeasible to generate efficient
projections for certain objective functions and constraint sets, tak-
ing the Euclidean projection onto the unit simplex as an example.
In this paper, we shall develop a class of distributed algorithms
that are built on mirror descent, which generalizes the projection
step using the Bregman divergence. Bregman divergences are a
general class of distance-measuring functions, which include the
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Euclidean distance and Kullback–Leibler (KL) divergence as special
cases. The work Xi, Wu, and Khan (2014) presents a first study
of the distributed optimization algorithm that builds on mirror
descent, for solving the non-strongly and deterministic variant of
problem (1); however, only convergence results are established for
the proposed algorithm.

Convergence rate is an important issue in the distributed de-
sign. Although the aforementioned algorithms in the last para-
graph can be applied to distributed optimization of strongly
convex functions, it is desirable to develop algorithms by fur-
ther exploiting the strongly convexity of the objective function,
in order to provide better performance such as faster conver-
gence rates. In Nedić and Olshevsky (2016), the authors proposed
a distributed stochastic subgradient-push algorithm for solving
problem (1), under the assumption that the stochastic gradi-
ents of the objective functions are Lipschitz. In particular, the
algorithm converges at an O(ln(T )/T ) rate in the unconstrained
case, which is (to the best of our knowledge) the previously best
known rate in the literature. The work Rabbat (2015) developed
a distributed proximal subgradient algorithm, that uses the Eu-
clidean distance as the distance-measuring function, for solving
the unconstrained composite stochastic optimization problems;
they prove that the proposed algorithm converges at an O(1/T )
rate, under the smoothness assumptions on the objective func-
tions. The authors in Tsianos and Rabbat (2012) proposed a class
of distributed algorithms (in both batch and online setting) that
converge at an O(ln(T )/T ) rate in the constrained case, without
making the smoothness assumptions on the objective functions.
Notably, recently thework Lan, Lee, & Zhou (2017) proposed a class
of distributed stochastic optimization algorithms that converge
at a rate of O(1/T 2), however, note that the algorithms are built
on the accelerated subgradient schemes that utilize two previous
estimates in the subgradient step.

In this paper we focus on establishing the convergence rate of
algorithms for the distributed strongly convex constrained opti-
mization problem in the following form

minimize F (w) =

m∑
i=1

Fi(w)

subject to w ∈ W

(1)

where each Fi is strongly convex in the non-Euclidean sense and
maybe non-smooth, and W ⊆ Rd is a convex constraint set
known to all the nodes in the network. Moreover, the nodes can
only compute the noisy subgradients of their respective objective
functions. To be specific, we assume that there exists a stochas-
tic subgradient oracle, which, for any point w ∈ W , returns a
random estimate ĝi(w) of a subgradient gi(w) ∈ ∂Fi(w) so that
E[ĝi(w)] = gi(w), where ∂Fi(w) denotes the subdifferential set
of Fi(·) at w. It is well-known that for (centralized) stochastic
optimization of non-smooth and strongly convex functions, the
optimal convergence rate is O(1/T ) (see, e.g. Hazan & Kale, 2014).
This fact, combined with the above observations, motivates us to
consider the following questions: (1) Is it possible to develop a
distributed stochastic mirror descent algorithm that recovers the
best previously known rate O(ln(T )/T ), for distributed optimiza-
tion of non-smooth and strongly convex functions? and (2) For the
same optimization problem, is it possible to devise a variant of the
developed algorithm that attains the optimal O(1/T ) convergence
rate?

In this paper, we give affirmative answers to the above ques-
tions. Specifically, the main contributions of this paper are high-
lighted as follows:

• We consider the construction of non-Euclidean algorithms
for distributed stochastic optimization of strongly convex

functions whose only stochastic subgradients are available.
The algorithms generalize the standard distributed stochas-
tic projected subgradient algorithms to the non-Euclidean
setting. Therefore, the proposed algorithms are more flex-
ible, in the sense that they enable us to generate efficient
updates to better reflect the geometry of the underlying
optimization problem, by carefully choosing the Bregman
divergence.

• We propose a distributed stochastic mirror descent (DSMD)
algorithm to answer the first question. In particular, we
show that for a total number of T iterations, the proposed
algorithm achieves an O (ln(T )/T ) rate of convergence, by
exploiting the strongly convexity of the objective functions.
The DSMD algorithm is a stochastic variant of the algorithm
in Xi et al. (2014), where only asymptotic convergence is
established. In addition, this rate recovers the best previous
known rate in Nedić and Olshevsky (2016) and Tsianos
and Rabbat (2012). Moreover, in contrast to the algorithm in
Nedić and Olshevsky (2016), our proposed DSMD algorithm
is in constrained setting, which naturally arises in a number
of applications where each node’s estimate has to lie within
some decision space (see, e.g. Nedić et al., 2010).

• We propose an epoch variant of the DSMD algorithm, called
Epoch-DSMD algorithm, to answer the second question. The
Epoch-DSMD algorithm combines the strength of the epoch
gradient descent algorithm that is widely used in the ma-
chine learning community (see, e.g. Hazan & Kale, 2014) and
the DSMD algorithm. In particular, we prove by induction
that the resulting point returned by the last epoch attains
the optimal O(1/T ) rate of convergence, which largely im-
prove the O (ln(T )/T ) rate obtained by Tsianos and Rabbat
(2012) with the Euclidean norm.

Notation: Let Rd be the d-dimensional vector space. Write ∥w∥2
to denote the Euclidean norm of a vector w ∈ Rd, and ⟨w, v⟩ to
denote the standard inner product on Rd, for any w, v ∈ Rd. We
denote by [m] the set of integers {1, . . . ,m}. For a vector w, we
denote its ith component by [w]i. We denote the (i, j)th element of
amatrix P by [P]ij. For a differentiable function f , Let∇f (w) denote
the gradient of f (·) at w, and E[X] denote the expected value of a
random variable X .

2. Problem setting and assumptions

In this paper, we are interested in solving convergence rate
problems for (1) over a time-varying multi-agent network. Specif-
ically, let G(t) = (V, E(t), P(t)) be a directed graph that represents
the nodes’ communication pattern at time t , whereV = {1, . . . ,m}

is the node set, E(t) is the set of activated links at time t , and P(t)
is the communication matrix at time t . We make the following
standard assumption on graph G(t) (see, e.g. Ramet al., 2010; Yuan,
Ho, Xu et al., 2016).

Assumption 1. The graph G(t) = (V, E(t), P(t)) satisfies (t =

1, 2, . . .):

(a) There exist a scalar 0 < ξ < 1 such that [P(t)]ii ≥ ξ for all i
and t , and [P(t)]ij ≥ ξ whenever (j, i) ∈ E(t);

(b) P(t) is doubly stochastic, i.e.,
∑m

i=1[P(t)]ij = 1 and∑m
j=1[P(t)]ij = 1 for all i and j;

(c) There exists some positive integer B such that the graph(
V,

⋃(s+1)B
t=sB+1E(t)

)
is strongly connected for every s ≥ 0.

We now give the definition of the Bregman divergence, which
is crucial in developing the algorithms.
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