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a b s t r a c t

We study an n-agent averaging process with dynamics subject to controls and adversarial disturbances.
The model arises in multi-population opinion dynamics with macroscopic and microscopic intertwined
dynamics. The averaging process describes the influence from neighbouring populations, whereas the
input term indicates how the distribution of opinions in the population changes as a result of dynamical
evolutions at a microscopic level (individuals’ changing opinions). The input term is obtained as the
vector payoff of a two player repeated game. We study conditions under which the agents achieve robust
consensus to some predefined target set. Such conditions build upon the approachability principle in
repeated games with vector payoffs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider an n-agent averaging process in which each agent
is described by a dynamic systemwith controlled and uncontrolled
inputs, the latter being adversarial disturbances.

We specialize themodel tomulti-population opinion dynamics.
The averaging process describes the influence from neighbouring
populations,whereas the input term indicates how thedistribution
of opinions in the population changes as a result of dynamical
evolutions at a microscopic level (individuals’ changing opinions).
The input term is obtained as the vector payoff of a two player
repeated game (Bauso, Lehrer, Solan, & Venel, 2015; Blackwell,
1956; Lehrer, 2002). Motivations for the dynamics can be found in
coalitional games with Transferable Utilities (TU games) (von Neu-
mann & Morgenstern, 1944), bargaining (Bauso & Notarstefano,
2012; Nedić & Bauso, 2013), consensus (Liu, Xie, & Wang, 2012;
Nedić, Ozdaglar, & Parrilo, 2010; Shi & Hong, 2009; Sundhar Ram,
Nedić, & Veeravalli, 2009), opinion dynamics (Acemoğlu, Como,
Fagnani, & Ozdaglar, 2013; Acemoğlu & Ozdaglar, 2011; Aeyels &
De Smet, 2008; Banerjee, 1992; Blondel, Hendrickx, & Tsitsiklis,
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2010; Castellano, Fortunato, & Loreto, 2009; Como & Fagnani,
2011; Hegselmann & Krause, 2002; Krause, 2000; Pluchino, Latora,
& Rapisarda, 2006; Sznitman, 1991) and inmulti-population games
with macroscopic and microscopic dynamics.

Themain contribution of this paper is to introduce a distributed
multi-stage receding horizon control strategy that ensures the ex-
istence of invariant and contractive sets for the collective dynam-
ics, and which can be used to enforce convergence of consensus to
a specified set.

This paper improves (Bauso, Cannon, & Fleming, 2014) as it links
the model to opinion dynamics and multi-population games, it
includes exponential stability and identifies regions of attraction
that are dependent and independent of the horizon, and it provides
newnumerical results. An alternativeway to dealwith theproblem
is to include a deterministic adversarial disturbance in the spirit of
set inclusion theory (Hofbauer, Benaïm, & Sorin, 2005, 2006).

The paper is organized as follows. In Section 2 we formu-
late the problem. In Section 3 we discuss motivations. Section 4
gives themain control theoretic results. Numerical illustrations are
presented in Section 5, and concluding remarks are provided in
Section 6.

Notation. We denote the Euclidean norm of a vector x as ∥x∥, and
we use aij or [A]ij to denote the ijth entry of a matrix A. We say that
A ∈ Rn×n is row-stochastic if aij ≥ 0 for all i, j ∈ {1, . . . , n} and∑n

j=1a
i
j = 1 for all i ∈ {1, . . . , n}. Matrix A is doubly stochastic

if both A and its transpose A⊤ are row-stochastic. We use |S| for
the cardinality of a given finite set S. We write PX [x] to denote the
projection of a vector x on a set X , andwewrite |x|X for the distance
from x to X , i.e., PX [x] = argminy∈X∥x− y∥ and |x|X = ∥x− PX [x]∥,
respectively.
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Fig. 1. Spaces of mixed strategies for the two players.

2. Model and problem set-up

For each i in a set N = {1, . . . , n}, agent i is characterized by
a state xi(t) ∈ Rñ. At every time t this state evolves according
to a distributed averaging process representing the interaction of
the agent with its neighbours, and under the influence of an input
variable ui(t).

Formally, the state xi(t) of agent i evolves as follows:

xi(t + 1) =

n∑
j=1

aij(t)xj(t) + ui(t), t = 0, 1, . . . (1)

where ai = (ai1, . . . , a
i
n) ∈ Rn is a vector of nonnegative scalar

weights relating to the communication graph G(t) =
(
N, E(t)

)
. A

link (j, i) ∈ E(t) exists (and hence aij(t) ̸= 0) if agent j is a neighbour
of agent i at time t .

For each agent i ∈ N , the input ui(·) is the payoff of a repeated
two-player game between player i (Player A) and an (external)
adversary (Player B). Let SA and SB be the finite sets of actions of
players A and B, respectively, and let us denote the set of mixed
action pairs by∆(SA)×∆(SB) (set of probability distributions on SA
and SB). For any pair ofmixed strategies (p(t), q(t)) ∈ ∆(SA)×∆(SB)
for player A and B at time t , the expected payoff is⎧⎪⎪⎨⎪⎪⎩

ui(t) =

∑
j∈SA,k∈SB

pij(t)φ(j, k)q
i
k(t),∑

j∈SA

pij(t) = 1,
∑
k∈SB

qik(t) = 1, pij, q
i
k ≥ 0.

(2)

Essentially, in the above game φ(j, k) ∈ Rñ is the vector payoff
when players A and B play pure strategies j ∈ SA and k ∈ SB,
respectively. Fig. 1 illustrates the continuous action sets for the two
players, for the case that SA = {1, 2, 3} and SB = {1, 2, 3}.

Let X ⊂ Rñ be a closed convex target set, and assume that
player A seeks to drive the state xi(t) to X , while player B tries to
push the state far from it. The resulting strategy can be formulated
as the solution of a robust optimization problem, with one player
minimizing and the other maximizing the distance of the state
from X .

In compact form the problem with finite horizon [0, T ] to be
solved by agent i takes the form:

min
pi(0)

max
qi(0)

· · · min
pi(T−1)

max
qi(T−1)

T∑
t=0

|xi(t)|2X

pi(t) ∈ ∆(SA), qi(t) ∈ ∆(SB),
xi(t + 1) = yi(t) + ui(t),

ui(t) =

∑
j∈SA,k∈SB

pij(t)φ(j, k)q
i
k(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ t = 0, . . . , T − 1

(3)

where yi(t) is the space average defined as

yi(t) =

n∑
j=1

aij(t)xj(t). (4)

Through the above problemwe can study contractivity and invari-
ance of sets for the collective dynamics (1)–(2). In the followingwe
simplify notation and drop the dependence on i of p and q.

3. Multi-population opinion dynamics

A simple model of opinion dynamics is derived from a classical
model of consensus dynamics that also arises in the Kuramoto
oscillator model (Pluchino et al., 2006). In this perspective, the
dynamicmodel (1) appears as a discrete-timemodel of a consensus
problem (Olfati-Saber, Fax, &Murray, 2007), in which the coupling
term accounts for emulation (an individual’s opinion is influenced
by those of its neighbours), and which includes an additional input
term (the natural opinion changing rate). In addition, the target
set X can be used to enforce consensus. For instance we can set
X := {x} ⊂ Rñ, in which case limt→∞xi(t) = x for all i ∈ N also
implies that limt→∞xi(t) − xj(t) = 0 for all i, j ∈ N . Note that this
notion of consensusmay be in general different from the consensus
studied in distributed algorithms (Olfati-Saber et al., 2007).

In the following we consider n distinct populations of agents
interacting according to a predefined topology. Let the collective
state be ξ (t) =

(
x1(t), . . . , xn(t)

)
, whichwe now see as a collection

of n macro-states. For each population, and at every time t ∈

[0, T ], a probability distribution function xi(t), i ∈ N , describes
the probability distribution of agents over a discrete set of micro-
states. In other words, consider a finite discrete space of micro-
states {1, . . . , ñ}, and let a probability distribution function be
given, mi : {1, . . . , ñ} × [0,+∞) → [0, 1], (j, t) ↦→ mi(j, t), which
satisfies

∑
j∈{1,...,ñ}mi(j, t) = 1 for every t . Now, let us collect all

distribution valuesmi(j, t), j ∈ {1, . . . , ñ} in themacro-state vector
of population i, namely:

xi(t) :=
(
mi(1, t),mi(2, t) . . . ,mi(ñ, t)

)
∈ [0, 1]ñ.

Thus, the averaging term in (1) describes the influence from neigh-
bour populations.

As for the input term, consider, from amicroscopic perspective,
the case that the political opinions in a single population are
distributed between two states, vote left and vote right, and such
a distribution is subject to transitions from one state to the other.
This is represented by the network depicted in Fig. 2where nodes 1
and 2 correspond to the two states. Two persuaders, one of which
is the controller (player A), the other the disturbance (player B),
can influence the transitions described by the controlled flows
v̂j, j = 1, . . . , 4 and disturbance parameters ŵk, k = 3, 4. In
particular, player A can influence all the transitions, while player B
has influence only on the transitions from node 2.

More generally, the terms v̂j and ŵk determine the transition
rates between state 1 (vote left) and state 2 (vote right). In other
words, a political campaign can make voters change their political
opinion, and the controlled transition rates v̂j, j = 2, 4 represent
the rates of change from one state to the other as a consequence of
such a deliberate action. The parameters ŵk modulate these flows
and are representatives of unpredicted or uncontrolled events that
can influence voters’ opinions.

In this case ñ = 2 and the evolution of the distribution is given
by

xi(t + 1) =

(
I + BB̃⊤

(
v̂2(t), v̂4(t)

)
+DD̃⊤

(
v̂4(t), ŵ4(t)

))
xi(t) (5)
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