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a b s t r a c t

This paper presents a novel method to construct a family of piecewise affine control Lyapunov functions.
Unlike most of existing methods which require the contractivity of their domain of definition, the
proposed control Lyapunov functions are defined over a so-calledN-step controllable set, which is known
not to be contractive. Accordingly, a robust control design procedure is presented which only requires
solving a linear programming problem at each sampling time. The construction is finally illustrated via a
numerical example.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As a fundamental concept in control theory (Lyapunov, 1907),
Lyapunov stability has been applied in intensive studies related to
stability analysis as well as control design. For the design purpose,
control Lyapunov functions are usually employed to synthesize
controllers guaranteeing closed-loop stability in the sense of Lya-
punov, see among the others Khalil (2002) and Zubov and Boron
(1964). Such control Lyapunov functions are usually chosen a priori
with special structural properties. More clearly, in the case of
linear optimal control, suitable quadratic objective functions rep-
resent control Lyapunov candidates, see e.g. Anderson and Moore
(2007), Chmielewski and Manousiouthakis (1996) and Daafouz
and Bernussou (2001). Moreover, model predictive control (MPC)
usually employs finite/infinite horizon quadratic cost functions as
control Lyapunov candidates, see for instance Kothare, Balakrish-
nan, and Morari (1996) and Mayne, Rawlings, Rao, and Scokaert
(2000). Extensive studies about control Lyapunov functions for
nonlinear systems have been found in the literature, see among the
others Primbs, Nevistić, and Doyle (1999). In case the underlying
system is subject to constraints, such a control Lyapunov function
should be determined such that the recursive feasibility is ensured.
This problem is closely related to the determination of the domain
of attraction.

Piecewise linear control Lyapunov functions date back to the
studies in Gutman and Cwikel (1987) for the nominal case, and are
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subsequently extended for the robust case to cope with additive
disturbances and/or polytopic uncertainty in Blanchini (1994),
Rakovic and Baric (2010) and Nguyen, Gutman, Olaru, and Hovd
(2013), leading to simple design formulations as linear program-
ming problems. However, these studies require that such control
Lyapunov functions be defined over contractive sets to guarantee
its strict decrease and the recursive feasibility.

This paper aims to present the construction of a more general
family of control Lyapunov candidates in the context of constrained
control, namely piecewise affine functions. These candidates are
defined over a so-calledN-step controllable set for a given positive
integer N, which is obtained from an increasing sequence of N
polytopes, and is known to be not necessarily (one step) con-
tractive. Accordingly, we prove that the conditions of a Lyapunov
function (the positivity and the strict decrease) are satisfied within
this N-step controllable set with a suitable robust control algo-
rithm. Note that the complexity of the proposed control Lyapunov
functions increases asN becomes larger, leading to amore complex
control algorithm over the ones using contractive set in Blanchini
(1994) andNguyen, Olaru, Rodriguez-Ayerbe, and Kvasnica (2017),
since the number of constraints in the proposed algorithm is larger
than the ones in two latter references. However, since this method
only requires solving a linear program at each sampling instant,
these results can be used for constrained control systems with
fast dynamics, e.g. vibration attenuation system, cf. Gulan, Takács,
Nguyen, Olaru, Rodriguez-Ayerbe, and Rohal’-Ilkiv (2017a, 2017b).

2. Generalities and basic notions

Throughout the paper, R,R+,N,N>0 denote the field of real
numbers, the set of nonnegative real numbers, the set of non-
negative integers and the positive integer set, respectively. The
following index set is also defined, for ease of presentation, with
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respect to a given N ∈ N>0: IN = {1, 2, . . . ,N}. A polyhedron
is defined as the intersection of finitely many closed halfspaces. A
polytope is defined as a bounded polyhedron. Also, V(P) is under-
stood as the set of vertices of polytope P . The distance from a point
x ∈ Rd to a set S ⊂ Rd denoted by ρS(x) is defined as ρS(x) :=
min
y∈S

√
(x− y)T (x− y).Given two sets S1, S2 ⊂ Rd,wedefine the set

S1 \ S2 :=
{
x ∈ Rd

: x ∈ S1, x ̸∈ S2
}
. Also, the Minkowski sum of

these two sets is defined as S1⊕ S2 := {x1 + x2 : x1 ∈ S1, x2 ∈ S2} .
We use ∂S to denote the boundary of a compact set S. Also, int(S)
represents the interior of a full-dimensional set S and conv(S)
denotes its convex hull. A function α(·) : R+ → R+ is said to be of
class K, if it is continuous, strictly increasing and α(0) = 0.

3. Problem settings

In this paper, we consider a linear time-varying system:

xk+1 = A(k)xk + B(k)uk + wk, (1)

where xk, uk, wk denote the state, control variable and additive
disturbance at time k. These variables satisfy

xk ∈ X, uk ∈ U, wk ∈ W, (2)

where the constraint sets X ⊂ Rdx ,U ⊂ Rdu ,W ⊂ Rdx are
assumed to be polytopes, containing the origin in their interior,
with given dx, du ∈ N>0. This assumption ensures that the origin
as the equilibrium point satisfies the above constraints. In case the
origin is not the equilibrium point, the system can be translated
into the frame of the equilibrium point and the construction can
be easily adapted. This assumption will be used later in (4) to
build a control Lyapunov function which is only equal to 0 at
the equilibrium point. Also, the state–space matrices A(k), B(k) are
assumed to belong to a given polytope, defined as below:

[A(k) B(k)] ∈ Ψ := conv {[A1 B1] , . . . , [AL BL]} . (3)

This paper aims to construct a new family of control Lyapunov
functions, also referred to as convex liftings in the present frame-
work. In particular, the control Lyapunov functions presented in
this paper are more general than the piecewise linear family pro-
posed in Blanchini (1994) and Rakovic and Baric (2010), since
besides their convex, piecewise affine properties, they are defined
over the N-step controllable set, known to be non-necessarily con-
tractive.

4. Construction of control Lyapunov functions

Before describing the main result, we need to recall some
important ingredients which are instrumental for the proposed
construction of control Lyapunov functions. Positive invariance
concept has been investigated in many studies (Aubin & Cellina,
2012; Bitsoris, 1988a, 1988b; Bitsoris & Vassilaki, 1995; Blanchini
& Miani, 2007) and used in different control strategy designs. In
case the system is affected by disturbances, the robust positive
invariance concept is of use instead.

Definition 4.1. Given an admissible linear control law uk = Kxk ∈
U, a set Ω ⊆ X is called robust positively invariant with respect to
system (1) subject to (2) and (3) iff

(A(k)+ B(k)K )Ω ⊕W ⊆ Ω, ∀ [A(k) B(k)] ∈ Ψ .

In order to compute such a set Ω, one should determine a local
controller u = Kx ∈ U, which can cope with both the model
uncertainty (3) and additive disturbances in W. Such a gain K can
be obtained by different methods, see among the others Daafouz
and Bernussou (2001) and Kothare et al. (1996). According to such

a local controller, one can use existing algorithms to compute
a robust positively invariant set, e.g., in Gilbert and Tan (1991),
Kolmanovsky and Gilbert (1998) and Nguyen et al. (2013). The
definition of another important ingredient N-step controllable set
is recalled below.

Definition 4.2. Consider system (1) subject to model uncertainty
(3) and constraints (2). Given a robust positively invariant set Ω

and N ∈ N>0, a set denoted by KN (Ω) ⊆ X is called the N-step
controllable set if any point belonging to this set can reach Ω in N
steps in the presence of suitable admissible controller, while stay-
ing insideXdespite any disturbances inW andmodel uncertainties
in Ψ . It is mathematically defined below for all i ∈ IN :

K0(Ω) = Ω,

Ki(Ω) =
{
xk ∈ X : ∃uk ∈ U s.t. ∀ [A(k) B(k)] ∈ Ψ ,

(A(k)xk + B(k)uk)⊕W ⊆ Ki−1(Ω)
}
.

To determine KN (Ω), the computation of the 1-step control-
lable set should be performed, i.e. Ki(Ω) should be computed
according to Ki−1(Ω). Indeed, if one defines an intermediate set

S :=
{[

xT uT ]T
∈ Rdx+du : x ∈ X, u ∈ U,

(Ajx+ Bju)⊕W ⊆ Ki−1(Ω), ∀j ∈ IL
}
,

then Ki(Ω) can be determined as the orthogonal projection of the
set S defined above onto the space of x. Similar computation is
repeated until i = N to obtain KN (Ω). The interested reader is
referred to Section 2.6 in Kerrigan (2001) for further detail. One
can easily see that if Ω is empty, then so are Ki(Ω) for i ∈ N.
Consequently, the proposedmethod cannot apply in this case. Also,
if Ω ̸= ∅ is not of full-dimension, then Ki(Ω) might not be of full-
dimension either. To illustrate this point,we consider the following
simple system: xk+1 =

[
1 0
0 αk

]
xk+

[
1
αk

]
uk,whereuncertaintyαk ∈

[−1, 1] and control variable uk ∈ [−1, 1]. If Ω = {0}, then one
can easily compute Ki(Ω) =

{
[y1 y2]T ∈ R2

: y1 = y2 ∈ [−1, 1]
}

for all i ∈ N>0. Although the proposed method can still apply
in this case, we exclusively consider the case as presented in
Assumption 1 to ensure that Ki(Ω) for i ∈ N are of full-dimension.

Assumption 1. Ω is a full-dimensional polytope in Rdx .

Note that 0 ∈ int(Ω) since the origin is assumed to be the
equilibrium point and a full-dimensional set Ω is robust posi-
tively invariant. Furthermore, since Ω satisfies Assumption 1 and
X,U,W are polytopes, then Ki(Ω) for any finite i ∈ N is also
a full-dimensional polytope. Therefore, the existence of a full-
dimensionalKN (Ω) depends on the existence of a full-dimensional
Ω, since they fulfill the following property.

Lemma 4.1. Given a robust positively invariant set Ω satisfying
Assumption 1, then Ki−1(Ω) ⊆ Ki(Ω) for all i ∈ N.

Clearly, the sequence {Ki(Ω)}∞i=0 is increasing and bounded
above by X, accordingly the limit exists. Note that if the limit of
this sequence is finitely determined, there exists N∗ ∈ N>0 such
that KN∗−1(Ω) ⊂ KN∗ (Ω) = KN∗+1(Ω). In this case, any positive
integer N < N∗ is suitable for the proposed construction to avoid
V(KN+1(Ω)) \ KN (Ω) = ∅. Otherwise, if the limit of {Ki(Ω)}∞i=0
is not finitely determined, this end may not be a polytope. In this
case, one can always ensure for any N < +∞ that KN (Ω) is a
polytope and V(KN+1(Ω)) \ KN (Ω) ̸= ∅. As a consequence, any
positive integer N can be used in the proposed construction.

Before presenting the main results of the paper, a parametric
linear programming (pLP) problem is recalled in the sequel:

max
x

cT x s.t. Hx ≤ Gλ+ b,
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