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a b s t r a c t

We investigate system identification for general quantum linear systems in the situation where the input
field is prepared as stationary (squeezed) quantum noise. In this regime the output field is characterised
by the power spectrum, which encodes covariance of the output state. We address which parameters
can be identified from the power spectrum and how to construct a system realisation from the power
spectrum. The power spectrum depends on the system parameters via the transfer function. We show
that the transfer function can be uniquely recovered from the power spectrum, so that equivalent systems
are related by a symplectic transformation.

Crown Copyright© 2018 Published by Elsevier Ltd. All rights reserved.

1. Introduction

System identification theory (Burgarth & Yuasa, 2012; Gam-
betta &Wiseman, 2001; Gammelmark, Julsgaard, &Mølmer, 2013;
Guţă & Kiukas, 2015, 2016; Ljung, 1987;Mabuchi, 1996; Pintelon &
Schoukens, 2012) lies at the interface between control theory and
statistical inference, and deals with the estimation of unknown pa-
rameters of dynamical systems and processes from input–output
data.

In this paper we consider system identification for quantum
linear systems (QLSs). QLSs are a class of models used in quantum
optics, opto-mechanical systems, electro-dynamical systems, cav-
ity QED systems and elsewhere (Doherty & Jacobs, 1999; Gardiner
& Zoller, 2004; Koga & Yamamoto, 2012; Stockton, van Handel,
& Mabuchi, 2004; Tian, 2012; Walls & Milburn, 2007). They have
many applications, such as quantum memories, entanglement
generation, quantum information processing and quantum con-
trol (Bouten, Van Handel, & James, 2007; Dong & Petersen, 2010;
James, Nurdin, & Petersen, 2008; Nurdin & Gough, 2014; Wiseman
& Milburn, 2009; Yamamoto, 2014).

QLSs are examples of input–output models. Typically, one has
access to the field and is able to prepare an input. After the cou-
pling, the parameters of the system (black-box) are imprinted on
the output. In a nutshell, the system identification problem is to
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estimate dynamical parameters from the output data, obtained
by performing measurements on the output. The identification
of QLSs is by now a well developed subject in ‘classical’ systems
theory (Anderson, Newcomb, Kalman, & Youla, 1966; Glover &
Willems, 1974; Ho & Kalman, 1966; Kalman, 1963; Ljung, 1987;
Pintelon & Schoukens, 2012; Youla, 1961; Zhou, Doyle, Glover,
et al., 1996), but has not been fully explored in the quantum
domain (Guţă & Yamamoto, 2016).We distinguish two contrasting
approaches to the identification of QLSs .

In the first approach, one probes the system with a known
time-dependent input signal (e.g. coherent state), then uses the
output measurement data to compute an estimator of the dy-
namical parameter(s). In this setting the transfer function entirely
encapsulates the systems input–output behaviour. Therefore, the
basic identifiability problem is to find the class of systemswith the
same transfer function. This problem has been addressed, firstly
for the special class of passive QLSs in Guţă and Yamamoto (2016)
and then for general QLSs in Levitt and Guţă (2017). In particular,
it was seen that minimal systems with the same transfer function
are related by symplectic transformations on the space of system
modes.

The second approach and the one we consider here is to probe
the systems with time-stationary pure Gaussian states with in-
dependent increments, i.e. squeezed vacuum noise. This setup is
relevant when it may not be possible for the experimenter to use
time-dependent inputs, e.g. in modelling a system where one can
only observe the power spectrum of the output and assumes that
the spectrum has been generated by some time-stationary pure
Gaussian state input. If the system is minimal and Hurwitz stable,
the dynamics exhibits an initial transience period after which it
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reaches stationarity and the output is in a stationary Gaussian
state, whose covariance in the frequency domain is given by the
power spectrum. The power spectrumdepends quadratically on the
transfer function, so the parameters which are identifiable in the
stationary scenario will also be identifiable in the time-dependent
one. Our goal is to understand to what extent the converse is also
true. This problem is of the type: ‘for a square rational matrix
V (s), where s ∈ C find rational matrix W (s) such that V (s) =

W (s)W (−s)† for all s ∈ C, which in the classical literature is called
the spectral factorisation problem (Anderson et al., 1966). Levitt and
Guţă (2017) looked at this problem for a generic class of single
input single output (SISO) QLSs. Now, for a given minimal system
there may exist lower dimensional systems with the same power
spectrum. To understand this, consider the system’s stationary
state and note that it can be uniquely written as a tensor product
between a pure and a mixed Gaussian state (cf. the symplectic
decomposition Wolf (2008)). Restricting the system to the mixed
component leaves the power spectrum unchanged (Levitt & Guţă,
2017). Conversely, if the stationary state is fullymixed, there exists
no smaller dimensional systemwith the samepower spectrum.We
call such systems globally minimal.

Themain result here is to show that under globalminimality the
power spectrum determines the transfer function, and therefore
the equivalence classes are the same as those in the transfer func-
tion. It is interesting to note that this equivalence is a consequence
of the unitarity and purity of the input state, and does not hold
for a generic classical linear system (Anderson et al., 1966; Glover
& Willems, 1974). The key to our proof is in reducing the power
spectrum identifiability problem to an equivalent transfer function
identifiability problem.

This paper is organised as follows: In Section 2 we review the
setup of input–output QLS. In Section 3we outline the power spec-
trum identifiability problem. We introduce the notion of global
minimality for systems and review recent important results. Our
main identifiability result is presented in Section 4, cf., Theorem 4.
Finally, we outline a method to construct a globally minimal sys-
tem realisation from the power spectrum.

We use the following notations: For a matrix X = (Xij), let
X = (X∗

ij ), X
T

= (Xji), X†
= (X∗

ji ) represent the complex conjuga-
tion, transpose and adjoint matrix respectively, where ‘*’ indicates
complex conjugation. We also use the ‘doubled-up notation’ X̆ :=[
XT , X

T
]T

and ∆(A, B) :=
[ A B
B A

]
. For a matrix Z ∈ R2n×2m define

Z ♭
= JmZ†Jn, where Jn =

[
1n 0
0 −1n

]
. A similar notation is used

for matrices of operators. We use ‘1’ to represent the identity
matrix or operator. δjk is Kronecker delta and δ(t) is Dirac delta.
The commutator is denoted by [·, ·].

Definition 1. A matrix S ∈ C2m×2m is said to be ♭-unitary if it is
invertible and satisfies S♭S = SS♭

= 12m. If additionally, S is of the
form S = ∆(S−, S+) for some S−, S+ ∈ Cm×m then we say that it is
symplectic.

2. Quantum linear systems

In this section we briefly review the QLS theory. We refer
to Gardiner and Zoller (2004) for a more detailed discussion on
the input–output formalism, and to the reviews (Nurdin, James, &
Doherty, 2009; Petersen, 2016) for the theory of QLSs.

2.1. Time-domain representation

A quantum input–output system is defined as a continuous
variables system coupled to a Bosonic environment, such that their
joint evolution is linear in all canonical variables. The system is

Fig. 1. (a) System identification problem: find parameters (A, C) of a linear input–
output system by measuring output. (b) Stationary scenario: power spectrum de-
scribes output covariance in frequency domain.

described by the column vector of annihilation operators, a :=

[a1, . . . , an]T , representing the n cv modes (see Fig. 1a). Together
with their respective creation operators a∗

:= [a∗

1, . . . , a
∗
n]

T they
satisfy the canonical commutation relations (CCR)

[
ai, a∗

j

]
= δij1.

We denote byH := L2(Rn) the Hilbert space of the system carrying
the standard representation of the n modes. The environment is
modelled by m bosonic fields, called input channels, whose funda-
mental variables are the fields B(t) := [B1(t), . . . ,Bm(t)]T , where
t ∈ R represents time. The fields satisfy the CCR

[
bi(t), b∗

j (s)
]

=

δ(t − s)δij1, where bi(t) are the infinitesimal (white noise) annihi-
lation operators formally defined as bi(t) := dBi(t)/dt (Petersen,
2016). The operators can be defined in a standard fashion on the
Fock space F = F(L2(R) ⊗ Cm) (Bouten et al., 2007). We consider
the scenario where the input is prepared in a pure, stationary in
time, mean-zero, Gaussian statewith independent increments with
covariance matrix(

dB(t)dB(t)† dB(t)dB(t)T

dB∗(t)dB(t)† dB∗(t)dB(t)T

)
=

(
NT

+ 1 M
M† N

)
dt

:= V (N,M)dt, (1)

where the brackets denote a quantum expectation. Note that N =

N†, M = MT and V ≥ 0, which ensures that the state does
not violate the uncertainty principle. In particular, N = M =

0 corresponds to the vacuum state, while pure squeezed states
satisfyM(N + 1)−1M = N (Gough, James, & Nurdin, 2010).

The dynamics of a general input–output system is determined
by the system’s Hamiltonian and coupling to the environment. In
the Markov approximation, the joint unitary evolution of system
and environment is given by the (interaction picture) unitary U(t)
on the joint space H ⊗ F , which is the solution of the quantum
stochastic differential equation (Bouten et al., 2007; Gardiner &
Zoller, 2004; Hudson & Parthasarathy, 1984)

dU(t) =
(
− (K + iH) dt + LdB†(t) − L†dB(t)

)
U(t), (2)

where K =
1
2

(
L†(1 + NT )L + LTNL − L†ML − LTML

)
and initial

condition U(0) = I. Here, H and L are system operators describing
the system’s Hamiltonian and field coupling.
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