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a b s t r a c t

This paper presents two realizations of linear quantum systems for covariance assignment corresponding
to pure Gaussian states. The first one is called a cascade realization; given any covariance matrix
corresponding to a pure Gaussian state, we can construct a cascaded quantum system generating that
state. The second one is called a locally dissipative realization; given a covariance matrix corresponding
to a pure Gaussian state, if it satisfies certain conditions, we can construct a linear quantum system
that has only local interactions with its environment and achieves the assigned covariance matrix. Both
realizations are illustrated by examples from quantum optics.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

For stochastic systems, many of the performance objectives are
expressed in terms of the variances (or covariances) of the system
variables. One way to achieve these objectives is to assign an
appropriate matrix value to the covariance of the vector of system
variables. This method, referred to as covariance assignment, has
been extensively studied in a series of papers, e.g., in Hotz and
Skelton (1987) and Skelton and Ikeda (1989). For linear stochastic
systems with white noises, the covariance matrix can be com-
puted by solving a Lyapunov equation for the system. In this case,
the covariance assignment problem reduces to designing system
matrices such that the corresponding Lyapunov equation has a
prescribed solution.

Turning our attention to the quantum case, we find that the
covariance matrix plays an essential role as well in the field of
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quantum information. In particular for a linear quantum system,
the importance of the covariance matrix stands out, because it can
fully characterize the entanglement property, which is crucial for
conducting quantum information processing (Braunstein & Pati,
2003; Weedbrook et al., 2012). Therefore it should be of great
use to investigate the covariance assignment problem for linear
quantum systems. There are several such proposals; Ohki, Hara,
and Yamamoto (2011) study a quantum feedback control problem
for covariance assignment, and Ikeda and Yamamoto (2013), Koga
and Yamamoto (2012), Ma, Petersen, and Woolley (2017), Ma,
Woolley, Petersen, and Yamamoto (2014, 2017) and Yamamoto
(2012) analyze systems that generate a pure Gaussian state. Since
a Gaussian state (with zero mean) is uniquely determined by
its covariance matrix, the aforementioned covariance assignment
problem is also known as the Gaussian state generation problem;
thus, if a linear quantum system achieves a covariance matrix
corresponding to a target Gaussian state, we call that the system
generates this Gaussian state.

Let us especially focus on Refs. Ikeda and Yamamoto (2013),
Koga and Yamamoto (2012), and Yamamoto (2012), which pro-
vide the basis of this paper. As mentioned before, in those pa-
pers pure Gaussian states are examined, which are a particularly
important subclass of Gaussian states such that the highest per-
formance of Gaussian quantum information processing can be
realized (Braunstein & Pati, 2003; Menicucci, Flammia, & van
Loock, 2011; Menicucci et al., 2006; Weedbrook et al., 2012).
Then they provided several methods to construct a stable linear
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quantumsystemgenerating a givenpureGaussian state.Moreover,
necessary and sufficient conditions for generating an arbitrary
pure entangled Gaussian state are given in Koga and Yamamoto
(2012) and Yamamoto (2012); these are important results, because
such a state serves as an essential resource for Gaussian quantum
information processing tasks. In the literature several methods
for generating various pure entangled Gaussian states have been
proposed. For instance, Adesso (2006) gives a systematicmethod to
generate an arbitrary pure entangled Gaussian state; the idea is to
construct a coherent process by applying a sequence of prescribed
unitary operations (composed of beam splitters (BS) and squeezers
in the optics case) to an initial state. Thus, thismethod is essentially
a closed-system approach. In contrast, the approach we take here
is an open-system one; that is, we aim to construct coherent and
dissipative processes such that the system is stable and evolves
into a desired target pure Gaussian state. This strategy is catego-
rized as a so-called reservoir engineering method (Cirac, Parkins,
Blatt, & Zoller, 1993; Krauter et al., 2011; Ockeloen-Korppi et al.,
2017; Poyatos, Cirac, & Zoller, 1996; Wang & Clerk, 2013; Woolley
& Clerk, 2014); in general, this approach has a clear advantage that
the system has good robustness properties with respect to initial
states and evolution time.

Now we describe the problem considered in this paper. The
methods developed in Koga and Yamamoto (2012) and Yamamoto
(2012) lead to infinitely many linear quantum systems that gener-
ate a target pure Gaussian state. Some of these systems are easy to
implement, while others are not. Then a natural question is how to
find a linear quantum system that is simple to implement, while
still generates the desired pure Gaussian state.

In this paper, we provide two convenient realizations of a linear
quantum system generating a target pure Gaussian state. The first
one is a cascade realization, which is a typical system structure
found in the literature (Gardiner, 1993; Nurdin, 2010; Petersen,
2011). We show that given any covariance matrix corresponding
to a pure Gaussian state, we can construct a cascaded quantum
system generating that state. This cascaded system is a series
connection of several subsystems in which the output of one is fed
as the input to the next. A clear advantage of the cascade realization
is that these subsystems can be placed at remote sites. Note that
the cascade structure has also been widely studied in the classical
control literature, e.g., Huang, James, and Jiang (2005).

The second one is a locally dissipative realization, which is mo-
tivated by the specific system structure found in, e.g. Ikeda and
Yamamoto (2013), Kraus et al. (2008), Rafiee, Lupo, Mokhtari, and
Mancini (2012) and Ticozzi and Viola (2012). In these references
the notion of quasi-locality has been studied, but in this paper
we focus on a stronger notion, locality. Here ‘‘locally dissipative’’
means that all the system–environment interactions act only on
one system component. Implementations of locally dissipative
systems should be considerably easier than those systems which
have non-local interactions (Bachor & Ralph, 2004). In this paper,
we show that given a covariance matrix corresponding to a pure
Gaussian state, if it satisfies certain conditions, we can construct a
locally dissipative quantum system generating that state.

Lastly, we mention that the state generated by our method is
an internal one confined in the system (e.g., an intra-cavity state
in quantum optics), rather than an external optical field state.
It means that if we aim to perform some quantum information
processing with that Gaussian state, it must be extracted to the
outside by for instance the method developed in Tufarelli, Ferraro,
Serafini, Bose, and Kim (2014). In particular, by applying some
non-Gaussian operations (e.g., the cubic phase gate or photon
counting) on that extractedGaussian state,we can realize quantum
information processing tasks such as entanglement distillation and
universal quantum computation (Weedbrook et al., 2012). On the
other hand, a generated internal Gaussian state is not necessarily

extracted to the outside for the purpose of precision measurement
in the scenario of quantummetrology; for example, in magnetom-
etry a spin squeezed state of an atomic ensemble can be directly
used and in this case the generated internal Gaussian state is not
necessarily extracted to the outside (Tóth & Apellaniz, 2014).

Notation. For A = [Ajk], we define A⊤
= [Akj], A†

= [A∗

kj],
where the superscript ∗ denotes either the complex conjugate of
a complex number or the adjoint of an operator. diag[τ1, . . . , τn]
denotes an n × n diagonal matrix with τj, j = 1, 2, . . . , n, on its
main diagonal. PN is a 2N × 2N permutation matrix defined by
PN [x1 x2 x3 x4 · · · x2N ]

⊤
= [x1 x3 · · · x2N−1 x2 x4 · · · x2N ]

⊤ for
any column vector [x1 x2 x3 x4 · · · x2N ]

⊤.

2. Preliminaries

We consider a linear quantum system G of N modes. Each
mode is characterized by a pair of quadrature operators {q̂j, p̂j},
j = 1, 2, . . . ,N . Collecting them into an operator-valued vector

x̂ ≜
[
q̂1 · · · q̂N p̂1 · · · p̂N

]⊤, wewrite the canonical commutation
relations as[
x̂, x̂⊤

]
≜ x̂x̂⊤

−
(
x̂x̂⊤

)⊤
= iΣ, Σ ≜

[
0 IN

−IN 0

]
. (1)

Here we emphasize that the transpose operation ⊤, when applied
to an operator-valued matrix (say, x̂x̂⊤), only exchanges the in-
dices of the matrix and leaves the entries unchanged. Therefore(
x̂x̂⊤

)⊤
̸= x̂x̂⊤. Let Ĥ be the Hamiltonian, and let {ĉj}, j =

1, 2, . . . , K , be Lindblad operators that represent the interactions
between the system and its environment. For convenience, we
collect all the Lindblad operators as an operator-valued vector
L̂ =

[
ĉ1 ĉ2 · · · ĉK

]⊤and call L̂ the coupling vector. Suppose Ĥ
is quadratic in x̂, i.e., Ĥ =

1
2 x̂

⊤Mx̂, withM = M⊤
∈ R2N×2N , and L̂ is

linear in x̂, i.e., L̂ = Cx̂, with C ∈ CK×2N , then the quantum systemG
can be described by the following quantum stochastic differential
equations (QSDEs){

dx̂(t) = A x̂(t)dt + B
[
dÂ⊤(t) dÂ†(t)

]⊤
,

dŶ (t) = C x̂(t)dt + dÂ(t),
(2)

where A = Σ(M + Im(C†C)), B = iΣ[−C† C⊤
], C =

C (Yamamoto, 2012), (Wiseman & Milburn, 2010, Chapter 6). The

input dÂ(t) =

[
dÂ1(t) · · · dÂK (t)

]⊤

represents K independent

quantum stochastic processes, with dÂj(t), j = 1, 2, . . . , K , satisfy-
ing the following quantum Itō rules:{

dÂj(t)dÂ∗

k(t) = δjkdt,

dÂj(t)dÂk(t) = dÂ∗

j (t)dÂ
∗

k(t) = dÂ∗

j (t)dÂk(t) = 0,
(3)

where δjk is the Kronecker δ-function. The output dŶ (t) =[
dŶ1(t) · · · dŶK (t)

]⊤

satisfies quantum Itō rules similar to (3)

(Belavkin, 1992; Bouten, Handel, & James, 2007; Gardiner & Zoller,
2000; Hudson & Parthasarathy, 1984; Wiseman & Milburn, 2010;
Yamamoto, 2012). The quantum expectation of the vector x̂ is de-
noted by ⟨x̂⟩ and the covariancematrix is given byV =

1
2 ⟨△x̂△x̂⊤

+

(△x̂△x̂⊤)⊤⟩, where △x̂ = x̂ − ⟨x̂⟩; see, e.g., Koga and Yamamoto
(2012), Menicucci et al., (2011) and Yamamoto (2012). The time
evolutions of themean vector ⟨x̂(t)⟩ and the covariancematrix V (t)
can be derived from (2) by using the quantum Itō rule. They are
given by⎧⎪⎨⎪⎩

d⟨x̂(t)⟩
dt

= A ⟨x̂(t)⟩, (a)

dV (t)
dt

= A V (t) + V (t)A ⊤
+

1
2

BB†. (b)
(4)
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