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a b s t r a c t

A Boolean network is a finite dynamical system, whose variables take values from a binary set. The value
update rule for each variable is a Boolean function, depending on a selected subset of variables. Boolean
networks have beenwidely used inmodeling gene regulatory networks.We focus in this paper on a special
class of Boolean networks, termed as conjunctive Boolean networks. A Boolean network is conjunctive if
the associated value update rule is comprised of only AND operations. It is known that any trajectory of
a finite dynamical system will enter a periodic orbit. We characterize in this paper all periodic orbits of a
conjunctive Boolean network whose underlying graph is strongly connected. In particular, we establish a
bijection between the set of periodic orbits and the set of binary necklaces of a certain length. We further
investigate the stability of a periodic orbit. Specifically, we perturb a state in the periodic orbit by changing
the value of a single entry of the state. The trajectory, with the perturbed state being the initial condition,
will enter another (possibly the same) periodic orbit in finite time steps. We then provide a complete
characterization of all such transitions from one periodic orbit to another. In particular, we construct a
digraph, with the vertices being the periodic orbits, and the (directed) edges representing the transitions
among the orbits. We call such a digraph the stability structure of the conjunctive Boolean network.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Finite dynamical systems are discrete-time dynamical systems
with finite state spaces. They have a long and successful history
of being used in biological networks (Funahashi & Nakamura,
1993), epidemic networks (Khanafer, Başar, & Gharesifard, 2014),
social networks (Etesami & Başar, 2016), and engineering control
systems (Imer, Yüksel, & Başar, 2006). In this paper, we focus on a
special class of finite dynamical systems, called Boolean networks
(or Boolean automata networks (Noual, Regnault, & Sené, 2013)).
Boolean networks are finite dynamical systems whose variables
are of Boolean type, usually labeled as ‘‘1’’ and ‘‘0’’. The Boolean
function, also known as the value update rule, for each variable
depends on a selected subset of the variables.

Boolean networks have been widely used in systems biology
and (mathematical) computational biology. This line of research
began with Boolean network representations of molecular net-
works (Kauffman, 1969a), and was later generalized to the so-
called logical models (Thomas & D’Ari, 1990). Since then there
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have been some studies of various classes of Boolean functions
which are particularly suited to the logical expression of gene
regulation (Kauffman, 1969b; Raeymaekers, 2002; Thomas, 1973).
Evidence has been provided in Sontag, Veliz-Cuba, Laubenbacher,
and Jarrah (2008) that biochemical networks are ‘‘close to mono-
tone’’. Roughly speaking, a Boolean network is monotonic if its
Boolean function has the property that the output value of the
function for each variable is non-decreasing if the number of
‘‘1’’s in the inputs increases. Monotonic Boolean networks have
been studied both theoretically (Jarrah, Laubenbacher, & Veliz-
Cuba, 2010; Melliti, Regnault, Richard, & Sené, 2013; Noual, 2012;
Noual, Regnault, & Sené, 2012; Remy, Mossé, Chaouiya, & Thief-
fry, 2003) and in applications (Georgescu et al., 2008; Mendoza,
Thieffry, & Alvarez-Buylla, 1999). Also, there have been studies of
Boolean networks with other types of Boolean functions: For ex-
ample, Boolean networks whose Boolean functions are monomials
were studied in Colón-Reyes, Jarrah, Laubenbacher, and Sturmfels
(2006); Colón-Reyes, Laubenbacher, and Pareigis (2005); Park and
Gao (2012). The work by Veliz-Cuba and Laubenbacher (2010)
considers the dynamics of the systems where the Boolean func-
tions are comprised of semilattice operators, i.e., operators that
are commutative, associative, and idempotent. Boolean networks
whose Boolean functions are comprised of only XOR operations
were investigated in Alcolei, Perrot, and Sené (2015), and whose
Boolean functions are comprised of AND and NOT operations were
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studied in Veliz-Cuba, Aguilar, and Laubenbacher (2015); Veliz-
Cuba et al. (2012).

A special class of Boolean functions, of particular interest to
us here, is the so-called nested canalyzing functions. This class of
functions was introduced in Kauffman (1993), and often used to
model genetic networks (Harris, Sawhill, Wuensche, & Kauffman,
2002; Kauffman, Peterson, Samuelsson, & Troein, 2003, 2004).
Roughly speaking, a canalyzing function is such that if an input of
the function holds a certain value, called the ‘‘canalyzing value’’,
then the output value of the function is uniquely determined re-
gardless of the other values of the inputs (Jarrah, Raposa, & Lauben-
bacher, 2007). Themajority of Boolean functions that appear in the
literature on Boolean networks are nested canalyzing functions.
Among the nested canalyzing functions, there are two simple but
important classes: A function in the first class is comprised of only
AND operations, with ‘‘0’’ the canalyzing value, while a function
in the second class is comprised of only OR operations, with ‘‘1’’
the canalyzing value. The corresponding Boolean networks are
said to be conjunctive and disjunctive, respectively (Goles & Noual,
2012; Jarrah et al., 2010). Note that there is a natural isomorphism
between the class of conjunctive Boolean networks and the class of
disjunctive Boolean network: indeed, if f (resp. g) is a function on
n Boolean variables x1, . . . , xn, comprised of only AND (resp. OR)
operations, then f (x1, . . . , xn) = ¬g(¬x1, . . . ,¬xn), where ‘‘¬’’ is
the negation operator, i.e., ¬0 = 1 and ¬1 = 0. It thus suffices to
consider only conjunctive Boolean networks. We note here that a
conjunctive Boolean network is monotonic.

Since a Boolean network is a finite dynamical system, for any
initial condition, the trajectory generated by the systemwill enter a
periodic orbit (also known as a limit cycle) in finite time steps (see,
for example, Colón-Reyes et al., 2005). A question that comes up
naturally is how the dynamical system behaves if a ‘‘perturbation’’
occurs in a state of a periodic orbit—meaning that one (and only
one) of the variables fails to follow the update rule for the next time
step (a precise definition is given in Section 4.2). The trajectory,
with the perturbed state as its initial condition, will then enter
another periodic orbit (possibly return to the original orbit). One
of the questions addressed in this work is thus to characterize all
possible transitions among the periodic orbits upon the occurrence
of a perturbation.

A complete characterization of these transitions among the
periodic orbits is given in Theorem 2, which captures the stabil-
ity structure of a conjunctive Boolean network. The analysis of
Theorem2 relies on a representation of periodic orbits,which iden-
tifies the orbits with the so-called binary necklaces (a definition is
given in Section 2.2). In particular, we show that there is a bijection
between the set of periodic orbits and the set of binary necklaces
of a certain length. To establish this bijection, we introduce in
Section 3 a new approach for analyzing the system behavior of a
conjunctive Boolean network: Roughly speaking, we decompose
the original Boolean network into several components. For each
of the components, there corresponds an induced dynamics. We
then relate in Theorem 1 the original dynamic to these induced
dynamics and establish several necessary and sufficient conditions
for a state to be in a periodic orbit. This new approach may be of
independent interest as it can be applied to other types of Boolean
networks as well.

The rest of the paper is organized as follows. In Section 2,
we first provide some basic definitions and notations for directed
graphs and the binary necklace. We then introduce the class of
conjunctive Boolean networks in precise terms. Some preliminary
results on such networks are also given. In Section 3, we introduce
the newapproach asmentioned above. A detailed organizationwill
be given at the beginning of that section. Then, in Section 4, we
characterize all possible transitions among periodic orbits. More-
over, we associate each transition with a positive real number,

Fig. 1. All binary necklaces of length 4. If the bead is plotted in dark blue (resp. light
yellow), then it holds value ‘‘1’’ (resp, ‘‘0’’). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

termed as transition weight, which can be understood as the like-
lihood of the occurrence of the transition. We provide conclusions
and outlooks in Section 5. The paper ends with Appendices which
contains proofs of some technical results.

2. Preliminaries

2.1. Directed graph

We introduce here some useful notation associated with a
directed graph (or simply digraph). Let D = (V , E) be a directed
graph. We denote by vivj an edge from vi to vj in D. We say that
vi is an in-neighbor of vj and vj is an out-neighbor of vi. The sets of
in-neighbors and out-neighbors of vertex vi are denoted byNin(vi)
andNout(vi), respectively. The in-degree and out-degree of vertex vi
are defined as |Nin(vi)| and |Nout(vi)|, respectively.

Let vi and vj be two vertices of D. A walk from vi to vj, denoted
by wij, is a sequence vi0vi2 · · · vim (with vi0 = vi and vim = vj) in
which vikvik+1 is an edge of D for all k ∈ {0, 1, . . . ,m−1}. A walk is
said to be a path if all the vertices in the walk are pairwise distinct.
A closed walk is a walk wij such that the starting vertex and ending
vertex are the same, i.e., vi = vj. A walk is said to be a cycle if there
is no repetition of vertices in the walk other than the repetition of
the starting- and ending-vertex. The length of a path/cycle/walk is
defined to be the number of edges in that path/cycle/walk.

A strongly connected graph is a directed graph such that for any
two distinct vertices vi and vj in the graph, there is a path from vi to
vj. A cycle digraph is a directed graph that consists of a single cycle.

2.2. Binary necklace

A binary necklace of length p is an equivalence class of p-
character strings over the binary set F2 = {0, 1}, taking all rota-
tions (circular shifts) as equivalent. For example, in the case of p =

4, there are six different binary necklaces, as illustrated in Fig. 1.
A necklace with fixed density is a necklace in which the number
of zeros (and hence, ones) is fixed. The order of a necklace is the
cardinality of the corresponding equivalence class, and it is always
a divisor of p. An aperiodic necklace (see, for example, Varadarajan
& Wehrhahn, 1990) is a necklace of order p, i.e., no two distinct
rotations of a necklace from such a class are equal. Thus, an aperi-
odic necklace cannot be partitioned intomore than one sub-strings
which have the same alphabet pattern. For example, a necklace
of 1010 (row 2, column 1 in Fig. 1) can be partitioned into two
substrings 10 and 10 which have the same alphabet pattern, and
thus is not aperiodic. A necklace of 1000 (row 1, column 2 in Fig. 1)
cannot be partitioned into more than one sub-strings with the
same alphabet pattern, and is aperiodic.

2.3. Conjunctive Boolean network

Let F2 = {0, 1} be the finite field with two elements. The two
elements ‘‘0’’ and ‘‘1’’ can, for example, represent the ‘‘off’’ status
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