
Automatica 90 (2018) 304–309

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A new integral sliding mode design method for nonlinear stochastic
systems✩

Yueying Wang a,*, Yuanqing Xia b, Hongyi Li c, Pingfang Zhou a,*
a School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
b School of Automation, Beijing Institute of Technology, Beijing 100081, China
c College of Engineering, Bohai University, Jinzhou 121013, China

a r t i c l e i n f o

Article history:
Received 7 April 2016
Received in revised form 2 June 2017
Accepted 30 September 2017
Available online 15 February 2018

Keywords:
Stochastic systems
T–S fuzzy models
Integral sliding mode control (ISMC)
Fuzzy integral sliding manifold

a b s t r a c t

Recently, several integral sliding mode control (ISMC) methodologies have been put forward to robust
stabilization of nonlinear stochastic systemsdepicted by T–S fuzzymodels. However, these results employ
very restrictive assumptions on system matrices, which impose a great limitation to real applications.
This paper aims to remove these assumptions and present a new ISMC method for fuzzy stochastic
systems subjected to matched/mismatched uncertainties. To this end, a novel fuzzy integral sliding
manifold function is adopted such that the matched uncertainties are completely rejected while the
mismatched ones will not be enlarged during the sliding mode phase. Sufficient conditions are derived
to ensure the stochastic stability of the closed-loop system under sliding motion. A fuzzy sliding mode
controller is further presented tomaintain the states of fuzzy stochastic system onto the predefined fuzzy
manifold in the presence of uncertainties. The effectiveness and benefit of the developed newmethod are
demonstrated by the inverted pendulum system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

During the past fewdecades, the study on Itô stochastic systems
has received considerable attention due to the typical exhibition
of stochastic phenomenon in many real-world situations, and a
large number of works have been reported (Mao, 2007; Wang,
Liu, & Liu, 2010). However, it is should be pointed out that the
available literatures mainly focus on the linear stochastic models,
while most practical stochastic systems are highly nonlinear. For
nonlinear stochastic systems, there lacks a systematic method-
ology on controller synthesis due to the difficulties in finding
an appropriate Lyapunov functions (Berman & Shaked, 2004). A
feasible and efficient way to solve this problem is to represent a
nonlinear stochastic system by T–S fuzzymodels (Chiu, Lian, & Liu,
2005; Wang, Xia, & Zhou, 2016). By adopting some fuzzy rules, a
complex nonlinear stochastic system can be depicted in the formof
a set of linear sub-models,which can be referred to fuzzy stochastic
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system. Thus, the well established linear stochastic system the-
ory can be utilized to study a highly nonlinear stochastic control
system (Wu & Zheng, 2009). This explains the reason for recent
surge of research attention on fuzzy stochastic systems (see, e.g.
Wu, Yang, & Lam, 2014).

As a fruitful research topic of the control community, sliding
mode control (SMC) has been widely applied to various complex
dynamical systems (Basin & Rodriguez-Ramirez, 2014; Chiu & Liu,
2016; Edwards & Spurgeon, 1998; Huang & Mao, 2010; Kao, Xie,
Wang, & Karimi, 2015; Levant & Fridman, 2010; Shi, Xia, Liu, &
Rees, 2006). Besides fast response, the main appeal of SMC is that
it has the ability to compensate matched uncertainties during the
slidingmode phase of system.However, during the reaching phase,
the systems are vulnerable to uncertainties and disturbance. As a
solution to this problem, an integral sliding mode control (ISMC)
strategy was established (Chiu, 2012; Hamayun, Edwards, & Alwi,
2012; Rubagotti, Estrada, Castanos, & Fridman, 2011; Utkin & Shi,
1996), where the reaching phase existed in normal sliding mode
control is eliminated, and sliding motion will be achieved from the
initial stage of the control action while maintaining the order of
the original system. In this situation, the robustness of the system
can be ensured throughout the entire system response. During
the past years, the ISMC methodology has been successfully ex-
tended to stochastic systems (Basin, Rodriguez-Ramirez, Fridman,
& Acosta, 2005; Niu, Ho, & Lam, 2005). Specially, several ISMC
design methods have extended to accommodate fuzzy stochastic
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systems. Specially, in Ho and Niu (2007), the ISMC problem was
first studied for a type of fuzzy stochastic time-delay systems,
which is formulated in form of

dz(t) =

r∑
i=1

ϕi (ν(t)) {Aiz(t) + Adiz(t − τ ) + Bu(t)} dt

+

r∑
i=1

ϕi (ν(t)) Cigi (x(t), x(t − τ )) dϖ (t).

(1)

However, the obtained ISMC approach employs two very re-
strictive assumptions, which impose a great limitation to real
applications. One is all the local input matrices are required to
be the same, while many practical physical plants including the
well known inverted pendulumcannot fulfill this requirement. The
other is the projectionmatrixW in the proposed slidingmanifold is
needed to satisfy WB is nonsingular and WCi = 0 simultaneously.
To remove the above two assumptions, Gao, Feng, Liu, Qiu, and
Wang (2014) and Gao, Liu, Feng, and Wang (2014) put forward a
dynamic ISMC methodology by resorting to the following distin-
guished integral sliding manifold:

s(t) = Wx [z(t) − z(0)] + Wu [u(t) − u(0)]

−

∫ t

0

r∑
i=1

ϕi (ν(τ ))Wx (Aiz(τ ) + Biu(τ )) dτ

−

∫ t

0

r∑
i=1

ϕi (ν(τ ))Wu (Fiz(τ ) + Wiu(τ )) dτ

(2)

where the related matrices
[
Ai Bi
Fi Wi

]
are required to be Hurwitz

for i = 1, . . . , r . It is worth mentioning that, however, parts of
their eigenvalues are the same as ones of matrices Ai, and the
eigenvalues of Ai cannot be adjusted by given matrices Fi and Wi.
In this case, if the system is not inherently stable (i.e., Ai are not
Hurwitz for all i = 1, . . . , r), it is hard to find suitable matrices Fi
andWi tomeet this requirement. Thus, this assumption is also very
restrictive for the practical application of the method.

The main purpose of the paper is to propose an alternative
ISMCmethodology for fuzzy stochastic systems, which can remove
the very restrictive assumptions in previous results. To this end, a
novel fuzzy integral sliding manifold function is utilized to better
accommodate the available features of fuzzy stochastic systems,
which is the key contribution of the paper. The existence condition
for the fuzzy manifold is offered. Sufficient conditions to ensure
the stochastic stability of the closed-loop system under sliding
motion are then presented. Moreover, a fuzzy sliding mode law is
synthesized to ensure reaching condition. Finally, the effectiveness
and benefit of the developedmethod are illustrated by the inverted
pendulum system.

2. Problem formulation and preliminaries

Consider a nonlinear Itô stochastic system described by the
following T–S fuzzymodel (Gao, Feng et al., 2014; Ho & Niu, 2007):
Model rule i: IF ν1(t) is τi1 and · · · νp(t) is τip , THEN

dz(t) = [(Ai + ∆Ai)z(t) + Bi (u(t) + fm (z(t), t))] dt
+ g (z(t), t) dϖ (t), i ∈ R = {1, 2, . . . , r} (3)

with ν1(t), ν2(t), . . . ,νp(t) being the premise variables and func-
tions of systemstate, τi1, τi2, . . ., τip being the fuzzy sets,ϖ (t) repre-
senting an l-dimensionWiener process (Brownianmotion) defined
on probability space (Ω,F,P), u(t) ∈ Rm being the input signal, r
being the number about fuzzy rules, z(t) ∈ Rn being the system
state, Ai ∈ Rn×n and Bi ∈ Rn×m being appropriate dimensioned

constant matrices. The matched uncertainty fm (z(t), t) ∈ Rm and
nonlinear function g (z(t), t) ∈ Rm×l are unknown and satisfy

∥fm (z(t), t)∥ ≤ κ ∥z(t)∥ , (4)

trace
[
gT (z(t), t) g (z(t), t)

]
≤ ∥Ez(t)∥2 (5)

with κ > 0 being a known scalar, E being a known matrix.
The mismatched uncertainties ∆Ai are assumed to be norm

bounded, i.e.,

∥∆Ai∥ ≤ σi, i ∈ R (6)

with σi > 0 being known constants.
By adopting a standard inference approach, the compact pre-

sentation of fuzzy stochastic system (3) is described as

dz(t) =

r∑
i=1

ϕi (ν(t)) [(Ai + ∆Ai)z(t) + Bi (u(t)

+ fm (z(t), t))] dt + g (z(t), t) dϖ (t)
(7)

where ϕi (ν(t)) are fuzzy basis functions satisfying

ϕi (ν(t)) =

∏p
i=1τij

(
νj(t)

)∑r
l=1

∏p
j=1τlj

(
νj(t)

) ≥ 0,
∑r

i=1
ϕi (ν(t)) = 1

with τij
(
νj(t)

)
denoting the grade of membership about variable

νj(t) in τij. Yet the general, the input matrix Bz =
∑r

i=1ϕi (ν(t)) Bi
is assumed to be with full column rank.

Throughout the paper, the following lemma will be used.

Lemma 1. For any full column rank state-dependent matrix Bz ∈

Rn×m, if the distribution ∆(z) = span
{
B⊥

z,k

}
, k = 1, . . . , n − m, is

involutive, that is[
B⊥

z,k,B
⊥

z,l

]
=

∂B⊥

z,l

∂z
B⊥

z,k −
∂B⊥

z,k

∂z
B⊥

z,l ∈ ∆(z),

∀k, l = 1, . . . , n − m (8)

where B⊥

z,k denotes the kth column about B⊥
z , [·, ·] indicates the two-

vector-fields-based Lie bracket. Then there exists a nonlinear function
w(z) ∈ Rm×1 such that ∂w(z)

∂z = W (z) = N(z)BT
z , with N(z) ∈ Rm×m

being with full rank.

Proof. By resorting to Frobenius’ Theorem (Isidori, 1996), the in-
volutivity of∆(z) indicates that there arem independent functions
wk(z) satisfying

∂wk(z)
∂z B⊥

z,l = 0, ∀1 ≤ k ≤ m, 1 ≤ l ≤ n − m.
Note that the matrix W T (z) is column full rank, it spans the or-
thogonal complement of∆(z), e.g. span

{
W T

k (z)
}

=
(
span

{
B⊥

z,k

})⊥,
which is equivalent to span

{
W T

k (z)
}

= span
{
Bz,k

}
by resorting to

double orthogonal complement (Luenberger, 1969). Therefore, the
columns of W T (z) and Bz are bases of the same subspace, and sat-
isfyW T (z) = BzNT (z), with matrix NT (z) being the transformation
matrix between them. This completes the proof.

3. Integral sliding manifold design and sliding motion analysis

In this section, a fuzzy integral slidingmanifoldwill be designed
and stochastic stability analysis will be provided for the corre-
sponding closed-loop system.

In this paper, we propose a novel fuzzy integral slidingmanifold
function for fuzzy stochastic system (7) as follows:

s(t) =

∫ t

0
W (z)dz −

∫ t

0
[W (z(τ ))

r∑
i=1

ϕi (ν(τ ))

×

r∑
j=1

ϕj (ν(τ ))
(
Aiz(τ ) + BiKjz(τ )

)⎤⎦ dτ

(9)
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