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a b s t r a c t

Sufficient and necessary conditions for the stability of positive feedback interconnections of negative
imaginary systems are derived via an integral quadratic constraint (IQC) approach. The IQC framework
accommodates distributed-parameter systems with irrational transfer function representations, while
generalising existing results in the literature and allowing exploitation of flexibility at zero and infinite
frequencies to reduce conservatism in the analysis. Themain resultsmanifest the important property that
the negative imaginariness of systems gives rise to a certain form of IQCs on positive frequencies that are
bounded away from zero and infinity. Two additional sets of IQCs on theDC and instantaneous gains of the
systems are shown to be sufficient and necessary for closed-loop stability along a homotopy of systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The notion of negative imaginary systems was introduced
in Lanzon and Petersen (2008) and Petersen and Lanzon (2010)
as a natural counterpart to positive real systems (Anderson &
Vongpanitllerd, 2007; Bao & Lee, 2007; Khalil, 2002; van der
Schaft, 2016). The negative imaginary property commonly arises
from the dynamics of a lightly damped structure with colocated
force actuators and position sensors (such as piezoelectric sen-
sors) (Bhikkaji & Moheimani, 2009; Petersen & Lanzon, 2010).
Such a system exhibits positive real dynamics from the force input
to the velocity output, but negative imaginary dynamics from the
force input to the position output, whose transfer function may
be of relative degree 2. Furthermore, negative imaginary systems
theory may also be employed to study certain systems that are
not passive, for which positive real results do not hold. Another
area where negative imaginary dynamics can be found is that
of nano-positioning systems (Devasia, Eleftheriou, & Moheimani,
2007). Owing to the prevalence of negative imaginary properties
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in real world applications, such systems have been studied exten-
sively in the literature (Das, Pota, & Petersen, 2013; Lanzon & Pe-
tersen, 2008; Petersen & Lanzon, 2010; Xiong, Petersen, & Lanzon,
2010). Feedback interconnections of negative imaginary systems
are interpreted from a geometric Hamiltonian systems viewpoint
in van der Schaft (2011). In Wang, Lanzon, and Petersen (2015),
the problem of robust output consensus of networked negative
imaginary systems is considered. Characterisations of negative
imaginary systems with symmetric irrational transfer functions
are considered in Ferrante and Ntogramatzidis (2013) and Fer-
rante, Lanzon, and Ntogramatzidis (2015). A nonlinear generali-
sation of negative imaginary dynamics, termed counterclockwise
input–output dynamics, is given in Angeli (2006).

The robustness of feedback interconnections of open-loop sta-
ble negative imaginary systems is investigated in Lanzon and Pe-
tersen (2008) as a parallel to the positive real stability results (An-
derson & Vongpanitllerd, 2007); see Fig. 1. It is shown that if
the instantaneous gain of Ḡ is positive semidefinite, i.e. Ḡ(∞) ≥

0, and the product of the instantaneous gains of Ḡ and G is 0,
i.e.G(∞)Ḡ(∞) = 0, then the closed-loop system [G, Ḡ] is internally
stable if, and only if, the DC gain condition λ̄(G(0)Ḡ(0)) < 1
is satisfied, where λ̄ denotes the spectral radius. This result is
further generalised in Xiong et al. (2010) to the case where G
may have imaginary-axis poles that are not located at the origin.
Physical interpretations of these results in terms of mass–spring–
damper systems and RLC electrical networks are provided in Pe-
tersen (2015). In particular, it is demonstrated using the negative
imaginary theory that certain mass–spring–damper systems with
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Fig. 1. Positive feedback interconnection of negative imaginary systems.

negative spring constants or RLC networks with negative induc-
tances or capacitances are stable, whereas the standard positive
real theory is inapplicable to such non-passive systems. These
stability conditions are robust in the sense that they are invariant
to negative-imaginary perturbations on the systems, provided that
the aforementioned gain conditions are not violated. Stability con-
ditions for negative imaginary systems with poles at the origin are
studied in Mabrok, Kallapur, Petersen, and Lanzon (2014).

When the presuppositions of the stability theorems in Lanzon
and Petersen (2008) and Xiong et al. (2010) do not hold, such
as Ḡ(∞) being sign-indefinite or G(∞)Ḡ(∞) ̸= 0, the DC gain
condition λ̄(G(0)Ḡ(0)) < 1 is not necessary. This paper derives
generic sufficient and necessary conditions for feedback stability of
negative imaginary systems with respect to a specified homotopy
using the theory of integral quadratic constraints (IQC) (Cantoni,
Jönsson, & Kao, 2012; Cantoni, Jönsson, & Khong, 2013; Megretski,
Jönsson, Kao, & Rantzer, 2010; Megretski & Rantzer, 1997). In par-
ticular, it is established that the negative imaginary properties of
the systems give rise to complementary IQCs on a set of frequencies
which do not include 0 and ∞ but can be arbitrarily large. This
interpretation clarifies the role of negative imaginariness in robust
feedback stability analysis. Furthermore, it leads to the observation
that feedback stability follows if, and only if, there exist constant
multipliers such that the corresponding complementary IQCs hold
at frequencies of 0 and ∞, of which the condition in Lanzon
and Petersen (2008) that λ̄(G(0)Ḡ(0)) < 1, Ḡ(∞) ≥ 0, and
G(∞)Ḡ(∞) = 0 is a special case. The robust stability result is
shown to extend to negative imaginary systems that are only
marginally stable, i.e. have poles on the imaginary axis. To this end,
a recently developed notion of IQCs for marginally stable systems
from Khong, Lovisari, and Rantzer (2016) is employed to conclude
closed-loop stability. This paper considers distributed-parameter
linear time-invariant systems that admit irrational transfer func-
tions. Such a class of systems corresponds to infinite-dimensional
state–space systems in the time domain (Curtain & Zwart, 1995).
Furthermore, no explicit state–space realisations are exploited in
any of the proofs for the main results. This contrasts the preceding
works (Lanzon & Petersen, 2008; Xiong et al., 2010), where state
matrices and thenegative imaginary lemma (the counterpart to the
positive real lemma) are heavily employed. Preliminary results in
this direction can be found in Khong, Petersen, and Rantzer (2015),
where only sufficient IQC conditions were given for the class of
proper real-rational transfer functions. Moreover, the results have
been further strengthened in this paper via the removal of an
assumption on a certain residual matrix and a reconciliation with
the existing results is provided. Note that due to space limitations,
the proofs of some of the results have been omitted from this
paper for cases in which similar proofs are given in Khong et al.
(2015). However, full details of all of the proofs can be found in the
archive version of this paper (Khong, Petersen, & Rantzer, 2017).
It is noteworthy that similar necessary and sufficient IQC based
results for robustness analysis involving time-delays can be found
in Scorletti (1997) and the idea of combining IQCs which hold on

subsets of the imaginary axis can be located in Jun and Safonov
(2002).

The paper evolves along the following lines. Section 2 intro-
duces the notation of the paper and defines the classes of negative
imaginary systems considered. Robust stability of feedback inter-
connections of stable negative imaginary systems is examined in
Section 3. Sufficient robust stability conditions for negative imag-
inary systems with imaginary-axis poles are derived in Section 4.
The necessity of IQC conditions for feedback stability of negative
imaginary systems is established in Section 5, and a reconciliation
with the existing robustness results takes place in Section 6. Two
numerical examples are given in Section 7 to illustrate the theory.
Finally, concluding remarks are provided in Section 8.

2. Notation and preliminaries

The notation used in this paper is defined in this section. Let R
andC denote, respectively, the real and complex numbers. The real
part of an s ∈ C is denoted as ℜ(s). C+ denotes the open right half
plane and C̄+ its closure. Given an A ∈ Cm×n (resp. Rm×n), A∗

∈

Cn×m (resp. AT
∈ Rn×m) denotes its complex conjugate transpose

(resp. transpose). Denote by σ̄ (A) and σ (A), the largest and smallest
singular values of matrix A, respectively, and by λ̄(B), the spectral
radius of B. In denotes the identity matrix of dimensions n × n.
Subsequently, the subscript nwill often be dropped for simplicity.

Let Rn×m denote the set of real-rational proper transfer func-
tion matrices of dimensions n × m and

Hn×m
∞

:=

{
X : C → Cn×m (a.e.)

⏐⏐⏐⏐⏐X is analytic in C+

sup
s∈C+

σ̄ (X(s)) < ∞

}
the set of stable transfer functions. The normof the elements inH∞

is denoted ∥ · ∥∞. Let C be the class of functions f : C → Cn×m

(a.e.) that are continuous on jR ∪ {∞}, and S := H∞ ∩ C. The
positive feedback interconnection of two transfer functions G and
Ḡ, denoted by [G, Ḡ], is described by:[
d1
d2

]
=

[
I −Ḡ

−G I

][
u1
u2

]
;

see Fig. 1.

Definition 1. Apositive feedback interconnection ofG and Ḡ is said
to be internally stable if[

I −Ḡ
−G I

]−1

=

[
I + Ḡ(I − GḠ)−1G Ḡ(I − GḠ)−1

(I − GḠ)−1G (I − GḠ)−1

]
is an element in H∞.

Define

N̂ := {R ∈ Sn×n
:

j[R(jω) − R(jω)∗] ≥ 0 ∀ω ∈ (0, ∞)} and
Ns := {R ∈ Sn×n

:

j[R(jω) − R(jω)∗] > 0 ∀ω ∈ (0, ∞)} ⊂ N̂.

N̂ denotes the set of stable negative imaginary transfer functions,
whileNs denotes the set of strictly negative imaginary transfer func-
tions. The set of stable (strictly) negative imaginary real-rational
proper transfer functions defined in Lanzon and Petersen (2008)
is a subclass of N̂ (Ns). In particular, an R ∈ R ∩ N̂ satisfies R(0) =

R(0)T ∈ Rn×n and R(∞) = R(∞)T ∈ Rn×n (Lanzon & Petersen,
2008, Lem. 2). Therefore, it follows that j[R(jω)−R(jω)∗] = 0when
ω = 0 or ω = ∞. The set of negative imaginary transfer functions
is defined below.

Definition 2. A transfer function R : C → Cn×n (a.e.) is said to be
negative imaginary if
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