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a b s t r a c t

The paper addresses the problem of transforming a single-input single-output nonlinear retarded time-
delay system, described by an input–output equation, in the traditional observable state space form. The
solution is generalized from the delay-free case and depends on integrability of certain submodule of
differential 1-forms. The integrability conditions are improved to make them constructive. Finally, it is
explained why one may obtain two realizations, which are not connected by bi-causal change of state
coordinates.
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1. Introduction

Numerous papers address the realization problem for nonlinear
delay-free control systems, see Belikov, Kotta, and Tõnso (2014,
2015), Zhang,Moog, and Xia (2010) and the references therein. The
same cannot be said about nonlinear time-delay systems, where
up to the authors knowledge only the paper (Garcia-Ramirez,
Moog, Califano, & Márquez-Martínez, 2016) addresses the special
case of linear realization up to nonlinear input–output injection
term. The problem has been also studied for linear time-delay
systems (Glusing-Luersen, 1997) and for the case when the delay
depends on the state (Verriest, 2013). However, the reverse prob-
lem, i.e., obtaining the i/o equations via state elimination has been
already addressed in Anguelova and Wennberg (2009) and Halas
and Anguelova (2013). It has been shown in Kotta, Kotta, onso,
andHalas (2011) that a nonlinear single-input single-output (SISO)
delay-free input–output (i/o) equation is realizable in the state–
space form if and only if certain vector space of differential 1-forms
is integrable. In the present paper this result is generalized for
nonlinear retarded SISO time-delay systems with commensurable
delays, i.e., for delays that are multiples of some fixed minimal
delay. Extension is, however, not direct since time-delay systems
are infinite dimensional. It means that the differential 1-forms
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have to be viewed as elements of a module, and not a vector space.
A consequence is that full rank conditions are not equivalent to
invertibility (matrices over ring may have full rank, but neverthe-
less be non-invertible within the same set of matrices). Therefore,
different system properties may be generalized in (often two) dif-
ferentways. One example is observability property, see Anguelova
andWennberg (2010), Garcia-Ramirez et al. (2016), Xia, Márquez-
Martínez, Zagalak, andMoog (2002), Zheng and Richard (2016) and
the references therein. In Garcia-Ramirez et al. (2016) one distin-
guishes weak and strong observability, where weak observability
corresponds to full rank of certain matrix, and strong observability
to invertibility of thematrix. The same situation happenswhen one
speaks about integrability of the modules of 1-forms. Frobenius
theorem is no longer appropriate, since it provides only rather
restrictive sufficient conditions. In Kaldmäe, Califano, and Moog
(2016) integrability problem is studied for nonlinear time-delay
systems. Two notions –weak and strong integrability – are defined
and characterized. However, no constructive method is given to
check the necessary and sufficient condition of strong integrability.
In this paper we improve the results of Kaldmäe et al. (2016) and
present a directly verifiable necessary and sufficient condition. This
condition is needed to solve the realization problem in the time-
delay case.

The aim of this paper is to transform a SISO retarded time-
delay system, described by the i/o equation, into a state–space
form, which is strongly or weakly observable. As shown already
in Garcia-Ramirez et al. (2016), two realizations are not necessarily
connected by bi-causal change of coordinates. The reasons are
explained in this paper; the source of the problem is in two ob-
servability notions. The problem can be avoided when we require
the state equations to be strongly observable.
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The paper is organized as follows. In Section 2 the sequence of
submodules is defined in terms of which the realization problem
will be studied. Integrability of 1-forms is studied in Section 3 and
themain results on realization problem are presented in Section 4.
The paper ends with conclusions.

2. Preliminaries

In this paper we work with nonlinear retarded single-input
single-output (SISO) systemswith constant commensurable delays
described by the input–output equation of the form

Φ(y(n)(t), y(n−1)(t − i), . . . , y(t − i), u(n−1)(t − i),
. . . , u(t − i); 0 ≤ i ≤ s) = 0,

(1)

where Φ is analytic. Denote by A the ring of analytic functions
depending on finite number of variables from the set C = {y(k)(t −

i), u(k)(t − i); i, k ∈ N}. The delay operator δ is defined on A as
δϕ(ξ (t)) = ϕ(ξ (t − 1)), where ϕ ∈ A and ξ (t) ∈ C. Let I be the
minimal ideal ofA that containsΦ , all the derivatives ofΦ and δiΦ
for all i > 0. Now, one can construct the quotient ring A/I , where
the addition and multiplication are defined in a natural way. We
assume that I is prime, whichmeans thatA/I is an integral domain
and thus allows to construct the field of fractions of the ring A/I ,
denoted by K. The operator δ is extended to K in a natural way.

Define the vector space of 1-forms as E = spanK{dϕ|ϕ ∈ K}.
The operator δ is extended to E as δ(

∑
jajdξj) =

∑
jδ(aj)dδ(ξj),

where aj ∈ K and ξj ∈ C. Using the delay operator δ, a
non-commutative polynomial ring K[ϑ] can be constructed. The
addition is defined in K[ϑ] as usual, but for multiplication the
following rule is used: ϑϕ = δ(ϕ)ϑ for ϕ ∈ K. Now, the 1-
formsmay be alternatively viewed as elements of themoduleM =

spanK[ϑ]{dϕ|ϕ ∈ K}. Unlike a vector space, not every module has
a basis. The modules, that do have a basis, are called free modules.
SinceK[ϑ] satisfies the left Ore condition (Xia et al., 2002), any two
basis of a freemodule have the same cardinality,which is called the
rank of the free module.

Definition 1 (Xia et al., 2002). The closure of a free submodule F
of M, denoted by clK[ϑ](F), is defined as clK[ϑ](F) = {ω ∈ M |

∃p(ϑ) ∈ K[ϑ], s.t. p(ϑ)ω ∈ F}.

By definition, the closure of the free submodule F is the largest
free submodule, containing F , and having the same rank as F . If
the closure of the submodule F is equal to itself, then F is said to
be closed.

We also use the set ofmatricesK[ϑ]
r×l defined over the polyno-

mial ringK[ϑ]. A special subset ofK[ϑ]
r×r is the set of unimodular

matrices, denoted by Ur [ϑ]. A matrix U ∈ K[ϑ]
r×r is said to be

unimodular if it has an inverse in K[ϑ]
r×r . A useful property for

polynomial matrices in K[ϑ]
r×l is the Jacobson decomposition,

see Cohn (1965).

Theorem 1 (Cohn, 1965). For every M(ϑ) ∈ K[ϑ]
r×l, r ≤ l, there

exist matrices V (ϑ) ∈ Ur [ϑ] and U(ϑ) ∈ Ul[ϑ] such that

V (ϑ)M(ϑ)U(ϑ) = (∆r , 0r,l−r ), (2)

where 0r,l−r is the matrix with zero entries, ∆r is square diagonal
matrix with elements (σ1, . . . , σk, 0, . . . , 0) such that σi ∈ K[ϑ], for
i = 1, . . . , k, and σi is a divisor of σi+1 for all i = 1, . . . , k − 1,
i.e., σi+1 = ασi for some α ∈ K[ϑ].

Note that the matrices U(ϑ) and V (ϑ) in (2) are not unique
whereas ∆r is. The matrix (∆r , 0r,l−r ) is called the Jacobson form
of the matrixM(ϑ).

To make the presentation more compact, the following nota-
tions are introduced: ξ[s] = (ξ (t), . . . , ξ (t − s)) for all ξ ∈ C. Thus,
the system (1) can be rewritten as

Φ(y(n), y(n−1)
[s] , . . . , y[s], u

(n−1)
[s] , . . . , u[s]) = 0. (3)

Also, for time-derivatives and time-delays the following notations
are used: d/dtξ = ξ̇ , d2/dt2ξ = ξ̈ , ξ (t − i) = ξ [−i] for i > 0.

In Xia et al. (2002) a sequence {Hi; i ≥ 1} of submodules of M
is used to study the accessibility property of time delay systems.
Here we define similar sequence for systems of the form (3) as

H1 = spanK[ϑ]{dy
(n−1), . . . , dy, du(n−1), . . . , du}

Hi+1 = {ω ∈ Hi|ω
(1)

∈ Hi}. (4)

It has been shown in Xia et al. (2002) that sequence (4) converges
to a submodule, denoted by H∞, and all the submodules Hi are
closed. From now onwe assume thatH∞ = {0}, which guarantees
that the system (3) is accessible (Xia et al., 2002). Note that,
by definition, H2 = spanK[ϑ]{dy(n−1), . . . , dy, du(n−2), . . . , du}.
Now, if we know two consecutive submodules Hi−1 and Hi, then
Algorithm 1 can be used to compute Hi+1.

Algorithm 1. Denote by ρi the rank of submodule Hi and
let Hi−1 = spanK[ϑ]{η1, . . . , ηρi , µ1, . . . , µρi−1−ρi}, Hi =

spanK[ϑ]{η1, . . . , ηρi}.

1. Compute η̇j for j = 1, . . . , ρi. By the definition of Hi, η̇j =∑ρi
l=1aj,lηl +

∑ρi−1−ρi
σ=1 cj,σµσ for some aj,l, cj,σ ∈ K[ϑ].

2. Construct a matrix C ∈ K[ϑ]
ρi×(ρi−1−ρi) whose elements are

cj,σ , j = 1, . . . , ρi, σ = 1, . . . , ρi−1 − ρi.
3. Find the left-kernel B ∈ K[ϑ]

(ρi−γ )×ρi of the matrix C , where
γ is the rank of matrix C .

4. Define the basis elements of Hi+1 as Bη, where η =

(η1, . . . , ηρi )
T .

The subspaces Hi have the following properties.

Lemma 1. (i) The submodule Hi of system (3) has rank 2n + 1 − i.
(ii) ω ∈ E is an element of Hi iff ω(i−1)

∈ H1.

Proof. (i) The proof is by mathematical induction. Since in Algo-
rithm 1 ρi−1 = 2n − 1 + 2 and ρi = 2n − i + 1, the matrix
C has dimension (2n − i + 1) × 1 and the matrix B dimension
(2n − i) × (2n − i + 1).

(ii) By the definition of the sequence {Hi; i ≥ 1} ω ∈ Hi ⇔ ω̇ ∈

Hi−1 ⇔ · · · ⇔ ω(i−1)
∈ H1. ■

3. Integrability

Compared to the results in Kaldmäe et al. (2016), we give a
different necessary and sufficient condition for checking the strong
integrability of a set of 1-forms. The new condition gives a method
to check the condition in Kaldmäe et al. (2016) and is thus more
constructive.

Definition 2 (Kaldmäe et al., 2016). A set of 1-forms {ω1, . . . , ωk},
independent over K[ϑ], is said to be strongly (weakly) in-
tegrable if there exist k independent functions {ϕ1, . . . , ϕk},
such that spanK[ϑ]{ω1, . . . , ωk} = spanK[ϑ] {dϕ1, . . . , dϕk}
(spanK[ϑ]{ω1, . . . , ωk} ⊆ spanK[ϑ]{dϕ1, . . . , dϕk}).

If the set of 1-forms {ω1, . . . , ωk} is strongly (respectively
weakly) integrable, then the submodule spanK[ϑ]{ω1, . . . , ωk} is
said to be strongly (respectively weakly) integrable.

Next, the conditions for checking strong integrability of a set of
1-forms are developed. Define for p ≥ 0 the sequence of vector
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