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a b s t r a c t

Motivated by network resource allocation needs, we study the problem of minimizing the dominant
eigenvalue of an essentially-nonnegativematrixwith respect to a trace-preserving or fixed-trace diagonal
perturbation, in the case where only a subset of the diagonal entries can be perturbed. Graph-theoretic
characterizations of the optimal subset design are obtained: in particular, the design is connected to the
structure of a reduced effective graph defined from the essentially-nonnegative matrix. Also, the change
in the optimum is studiedwhen additional diagonal entries are constrained to be undesignable, from both
an algebraic and graph-theoretic perspective. These results are developed in part using properties of the
Perron complement of nonnegative matrices, and the concept of line-sum symmetry. Some results apply
to general essentially-nonnegative matrices, while others are specialized for sub-classes (e.g., diagonally-
symmetrizable, or having a single node cut).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of allocating or redistributing limited local control
resources to shape a network’s dynamics is of interest in several
domains, including in the mitigation of network spread processes,
management of various compartmental systems, and control of
transients in large-scale infrastructures. In many of these applica-
tion domains, control resources can only be placed or recruited in a
limited subset of network locations. The limited control resources
thus must be designed to leverage the intrinsic interconnectivity
of the network, so as to meet performance criteria. Further, the
scale and complexity of the networks often dictate that simple
topological rubrics rather than formal methods are needed for
resource allocation. Also, in many of these application domains,
resource redesign as constraints change is often needed in lieu of
or in addition to ab initio design.

The purpose of this paper is to study a canonical optimization
problem which arises in the design of limited control resources to
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shape an associated network dynamics. Specifically, a network dy-
namics defined by an essentially-nonnegative (Metzler) matrix – a
matrix whose off-diagonal entries are nonnegative – is considered.
Placement of local control resources is abstracted as perturbing
diagonal entries of the Metzler matrix (altering local dynamical
characteristics). The goal of the design is to optimize this diagonal
perturbation, subject to the constraints that (1) only a subset of
entries may be perturbed (resource allocations are only permitted
at some network locations); and (2) the sum of the perturbed
entries is zero (resource re-distribution) or fixed (allocation on a
fixed resource budget). The aim of the design is to optimize the
dominant eigenvalue of the Metzler matrix, which captures or
approximates a dominant propagative dynamics in the network.
Succinctly, the problem addressed here is the design of trace-
preserving or fixed-trace diagonal perturbations of an essentially
nonnegative matrix to minimize a dominant eigenvalue, in the
case where only a subset of entries can be designed. We study
this fixed-trace subset design problem, with a focus on developing
graph-theoretic insights into the optimal solution and addressing
resource re-design when constraints are changed.

This study extends a research effort in the linear-algebra lit-
erature on optimizing the dominant eigenvalue of an essentially-
nonnegative matrix over trace-preserving or fixed-trace diagonal
perturbations (Johnson, Loewy, Olesky, & Van Den Driessche,
1996; Johnson, Stanford, Dale Olesky, & van den Driessche, 1994),
which is part of a broader effort on the fast eigen-decomposition of
thesematrices (see Johnson, Pitkin, and Stanford (2000), Schneider
and Zenios (1990), Zhang, Qi, Luo, and Xu (2013)). These works
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exploit the convexity of the dominant eigenvalue with respect to
the diagonal entries along with a similarity transformation to a
line-sum-symmetric form (where each row sum is equal to the cor-
responding column sum), to develop computationally-appealing
solutions and some structural insights into the optimiza-
tion (Eaves, Hoffman, Rothblum, & Schneider, 1985; Johnson et
al., 1994). This study also contributes to a thrust on resource-
constrained control of spread dynamics in the controls com-
munity (Enyioha, Preciado, & Pappas, 2013; Preciado, Zargham,
Enyioha, Jadbabaie, & Pappas, 2014; Ramirez-Llanos & Martinez,
2014; Ramírez-Llanos & Martínez, 2015; Robertson, Eisenberg, &
Tien, 2013;Wan, Roy, & Saberi, 2008),which has addressed parallel
optimization problems and generalizations to those considered in
the linear-algebra literature, using both structural and numerical
approaches (Preciado et al., 2014; Ramírez-Llanos & Martínez,
2015). Of particular relevance, algebraic characterizations of the
optimum and numerical optimization algorithms were developed
for the subset-design problem in Abad Torres, Roy, andWan (2017,
2015). The presented research also contributes to a growing effort
to characterize the input–output dynamics of sparsely actuated
and measured network dynamics (Abad Torres & Roy, 2015b,
c; Dhal & Roy, 2013; Liu, Slotine, & Barabási, 2013; Pasqualetti,
Zampieri, & Bullo, 2014; Rahmani, Ji, Mesbahi, & Egerstedt, 2009;
Roy, Xue, & Das, 2012; Xue, Wang, & Roy, 2014).

Relative to the literature, the main contribution of this study
is to (1) develop graph-theoretic insights into the optimal subset
design and its performance and (2) systematically address resource
re-design as constraints are changed. In particular, we show that
the pattern of resource distribution at the optimum is closely tied
to the network’s graph (the pattern of zero and nonzero entries
of the matrix) and the locations of control channels (or designable
resources) relative to the graph. Algorithms for resource re-design
are also obtained, and the re-allocation is shown to be specially
patterned for certain network structures. As a whole, the study
shows how resource placements can account for the undesignable
structure of a network in shaping response characteristics. We
note that some results apply to arbitrary essentially-nonnegative
matrices, while are specialized to particular sub-classes (e.g., di-
agonally symmetrizable, line-sum symmetric, or having a special
graph structure).

The article is organized as follows. The design problem is in-
troduced in Section 2. Preliminary algebraic analyses and design
algorithms are reviewed in Section 3. Graph-theoretic results on
the optimal design are described in Section 4, and the re-design
problem is addressed in Section 5. An example is presented (Sec-
tion 6), and brief conclusions are given (Section 7). Initial results in
this direction were given in Abad Torres and Roy (2015a).

2. Problem formulation and notation

An n × n real essentially-nonnegative (or Metzler) matrix A is
considered. The problem of interest is to find a fixed-trace diagonal
perturbation matrix D = diag(D1, . . . ,Dn) such that the dominant
eigenvalue of A+ D is minimized, subject to the further constraint
that some entries of D are restricted to be zero (say, Di = 0 for
i = m + 1, . . . , n, without loss of generality). This problem can be
formalized as follows:
argmin
D1,...,Dm

λmax(A + D)

s.t. Di = 0 ∀i = m + 1, . . . , n,
m∑
i=1

Di = Γ ,

(1)

where Γ specifies the trace of the imposed perturbation, and λmax
refers to the dominant eigenvalue, i.e. the eigenvalue whose real

part is largest (most positive). Since A + D is essentially nonneg-
ative, this dominant eigenvalue is real, see Cohen (1981). Some
results are focused specifically on the trace-preserving case, where
Γ = 0.

The problem can be interpreted as a resource allocation task,
where finite resources Di are being placed at a subset of network
locations to suppress a linear propagative dynamics governed by
the state matrix A (with more negative Di corresponding to higher
resource levels). For such network applications, the zero–nonzero
pattern of the matrix A specifies the network’s topology. Thus, to
enable graph-theoretic analysis, we associate with the matrix A a
weighted digraph G = (V , E : W ), where the vertices contained in
V are labeled 1, . . . , n, an arc (directed edge) is drawn from vertex
i to vertex j (i ̸= j) if and only if Aj,i ̸= 0, and the arc is assigned a
weight Aj,i.

Some matrix and graph terminology/notation is used in our
development. The entries in D that are not constrained to be zero
(and corresponding graph vertices) are termed designable entries
(vertices); the constrained entries/vertices are called undesignable.
The diagonal matrix D that minimizes the dominant eigenvalue of
A+D is denoted as D̄. The dominant eigenvalue and corresponding
eigenvectors of A + D̄ are denoted as λ̄max, w̄max and v̄max. Fur-
ther, wmax,i and vmax,i refer to the ith entries of left- and right-
eigenvectors associated with the dominant eigenvalue. A couple
of standard graph-theoretic terms are also used: a vertex cut set
is a set of vertices whose removal results in a disconnected graph,
while an (edge) cut set is a set of edges whose removal results in a
disconnected graph.

3. Preliminaries: algebraic analysis and algorithms

In Abad Torres et al. (2017), an algebraic analysis was con-
ducted of the spectrum of A + D for the optimal fixed trace subset
perturbation design D = D̄, and used to develop an algorithm
for finding the optimal perturbation. These analyses, which are
preliminary to the results developed here, are reviewed (without
proof) in the following theorem and lemma.

Theorem1. Consider thematrix A+D, where D = diag(D1, . . . ,Dm,

0, . . . , 0) and A is a real essentially-nonnegative matrix (which may
or may not be irreducible). Consider any D = D̄ that minimizes the
dominant eigenvalue of A + D subject to

∑m
i=1Di = Γ . Assume

that A + D̄ has a real simple dominant eigenvalue. The left and right
dominant eigenvectors, w̄max and v̄max, of A + D̄ satisfy one of the
following conditions: (1) There exists µ̄ > 0 such that w̄max,iv̄max,i =

µ̄ ∀i = 1, 2, . . . .,m; (2) w̄max,iv̄max,i = 0 ∀i = 1, 2, . . . .,m.
Furthermore, if A is irreducible, then A+ D̄ has a real simple dominant
eigenvalue, and the optimizing D̄ and the dominant eigenvectors
always satisfy condition 1.

The algorithm for computing the optimal trace-preserving diag-
onal perturbation matrix requires some further notation. Specif-
ically, it is useful to partition the topology matrix A as A =[
A11 A12
A21 A22

]
, where A11 is an m × m matrix. The result also draws

on the fact that there always exists a diagonal similarity transfor-
mation matrix P such that PAP−11⃗ = P−1A′P 1⃗, where 1⃗ is the all
ones vector of the appropriate dimension and A′ is the transpose
of A (see Eaves et al. (1985), Schneider and Zenios (1990) for
the computation of the row-sum-symmetrizing transformation P).
Here is the algorithm:

Lemma 1. Consider the matrix A + D, where D = diag(D1, . . . ,Dm,

0, . . . , 0), and A is an irreducible essentially-nonnegative matrix. The
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