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a b s t r a c t

This paper considers the identification of the modules of a network of locally controlled systems (multi-
agent systems). Its main contribution is to determine the least perturbing identification experiment
that will nevertheless lead to sufficiently accurate models of each module for the global performance
of the network to be improved by a redesign of the decentralized controllers. Another contribution is to
determine the experimental conditions under which sufficiently informative data (i.e. data leading to a
consistent estimate) can be collected for the identification of any module in such a network.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the problem of designing an iden-
tification experiment that will allow to improve the global per-
formance of a network made up of the interconnection of locally
controlled systems. The identification experiment will be designed
in such a way that we obtain a sufficiently accurate model of each
module in the network to be able to improve the global perfor-
mance of the network by redesigning the local controllers. The type
of networks considered in this paper is usual in the literature on
multi-agent systems (see e.g. Fax and Murray, 2004; Korniienko,
Scorletti, Colinet, and Blanco, 2014).

This paper contributes to the efforts of developing techniques
for the identification of large-scale or interconnected systems
when the topology of the network is known. In many papers,
the problem is seen as a multivariable identification problem and
structural properties of the system are then used to simplify this
complex problem (see e.g. Haber and Verhaegen, 2013). The iden-
tifiability of the multivariable structure is studied in a prediction
error context in Weerts, Dankers, and Van den Hof (2015) while
this multivariable structure is exploited in other papers to reduce
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the variance of a givenmodule in the network (see Everitt, Bottegal,
Rojas, and Hjalmarsson, 2015; Gunes, Dankers, and Van den Hof,
2014; Hägg and Wahlberg, 2014). Unlike most of these papers,
we consider here a network whose interconnection is realized by
exchanging the measured (and thus noisy) output of neighboring
modules. Another important difference is that, in our setting, all
modules can be identified independently using single-input single-
output identification. Consequently, we are close to the situation
considered in our preceding papers on dynamic network identi-
fication (see e.g. Dankers, Van den Hof, Bombois, and Heuberger,
2016). In these contributions, we have developed conditions for
consistent estimation of one given module in a dynamic network.
Since general networkswere considered in these contributions, the
data informativity was tackled with a classical condition on the
positivity of the spectral densitymatrix (Ljung, 1999). The first con-
tribution of this paper is to extend these results for the considered
type of networks by giving specific conditions for data informativ-
ity. In particular,we show that it is not necessary to excite a specific
module i to consistently identify it as long as there exists at least
one path from another module j to that particular module i. In this
case, the noise present in the noisy output measurement yj will
give sufficient excitation for consistent estimation.

However, the main contribution of this paper is to tackle the
problem of optimal experiment design for (decentralized) control
in a network context. More precisely, our contribution lies in the
design of the identification experiment thatwill lead to sufficiently
accurate models of each module of the network to guarantee a
certain level of global performance via the design of local con-
trollers. The identification experiment consists of simultaneously
applying an excitation signal in each module (i.e. in each closed-
loop system) and our objective is to design the spectra of each

https://doi.org/10.1016/j.automatica.2017.12.014
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2017.12.014
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.12.014&domain=pdf
mailto:xavier.bombois@ec-lyon.fr
mailto:anton.korniienko@ec-lyon.fr
mailto:hakan.hjalmarsson@ee.kth.se
mailto:gerard.scorletti@ec-lyon.fr
https://doi.org/10.1016/j.automatica.2017.12.014


170 X. Bombois et al. / Automatica 89 (2018) 169–179

of these excitations signals in such a way that the global control
objective is achieved with the least total injected power. In this
sense, we extend the results in Barenthin, Bombois, Hjalmarsson,
and Scorletti (2008) and Bombois, Scorletti, Gevers, Van den Hof,
and Hildebrand (2006) considering one local loop with a local per-
formance objective to the case of network of closed-loop systems
with (both a local and) a global performance objectives. Like in
Barenthin et al. (2008) and Bombois et al. (2006), the uncertainty of
an identified model will be represented via its covariance matrix.
The difference is that this covariancematrix will here be a function
of the excitation signals injected in each module that has a path to
the consideredmodule and of course that therewill be a covariance
matrix per identified module. Like in Barenthin et al. (2008) and
Bombois et al. (2006), the maximal allowed uncertainty will be
determined using tools from robustness analysis. To avoid heavy
computational loads linked to a high number of modules Nmod and
to structureduncertainties characterized byNmod uncertain param-
eter vectors, the uncertainty is first projected into an unstructured
uncertainty on the complementary sensitivity describing each con-
nected closed-loop system and then the robustness analysis is
based on the interconnection of these unstructured uncertainties.
This approach (called hierarchical approach) to analyze the robust-
ness of large-scale (interconnected) systems has been introduced
in Safonov (1983) and further developed in Dinh, Korniienko, and
Scorletti (2014). A technical contribution of this paper is to develop
a methodology that allows the use of the hierarchical approach in
the presence of the nonstandard uncertainty delivered by system
identification. The methodology developed in this paper allows to
perform the robustness analysis via the hierarchical approach in
an efficient way. It is nevertheless to be noted that, as was also
observed in Barenthin et al. (2008), the corresponding optimal
experiment design problem cannot be convexified and has thus to
be tackled via a (suboptimal) iterative approach inspired by the so-
called D–K iterations (Zhou & Doyle, 1998).

Note also that the framework considered here is much different
than the frameworks of Hägg and Wahlberg (2015) and Vincent,
Novara, Hsu, and Poolla (2010)which is, to our knowledge, the only
other papers treating the optimal experiment design problem in a
network. In Vincent et al. (2010), the authors consider input design
for nonparametric identification of static nonlinearities embedded
in a network. The main purpose of Hägg and Wahlberg (2015)
lies in the use of measurable disturbances in optimal experiment
design.

Notations. The matrix⎛⎜⎝X1 0 0

0
. . . 0

0 0 XN

⎞⎟⎠
will be denoted diag(X1, . . . , XN ) if the elements Xi (i = 1, . . . ,N)
are scalar quantities while it will be denoted bdiag(X1, . . . , XN ) if
the elements Xi (i = 1, . . . ,N) are vectors or matrices.

2. Identification of interconnected systems

2.1. Description of the network configuration

We consider a network made up of Nmod single-input single-
output (SISO) systems Si (i = 1...Nmod) operated in closed loop
with a SISO decentralized controller Ki (i = 1...Nmod):

Si : yi(t) = Gi(z, θi,0)ui(t) + vi(t) (1)

ui(t) = Ki(z)(yref ,i − yi(t)) (2)

ȳref (t) = A ȳ(t) + B refext (t). (3)

Let us describe these equations in details. The signal ui is the input
applied to the system Si and yi is the measured output. This output
is made up of a contribution of the input ui and of a disturbance
term vi(t) = Hi(z, θi,0)ei(t) that represents both process and mea-
surement noises. The different systems Si (i = 1...Nmod) are thus
described by two stable transfer functions Gi(z, θi,0) and Hi(z, θi,0),
the later being also minimum-phase and monic. The signals ei
(i = 1...Nmod) defining vi are all white noise signals. Moreover, the
vector ē ∆

= (e1, e2, . . . , eNmod )
T has the following property:

Eē(t)ēT (t) = Λ

Eē(t)ēT (t − τ ) = 0 for τ ̸= 0
(4)

with E the expectation operator and with Λ a strictly positive
definite matrix. With (4), the power spectrum Φē(ω) of ē is given
by Φē(ω) = Λ for all ω. We will further assume that the signals
ei (i = 1...Nmod) are mutually independent. The matrix Λ is then
diagonal1 i.e.Λ = diag(Λ1,1,Λ2,2, . . . ,ΛNmod,Nmod ) > 0.

The systems Si in (1)may all represent the same type of systems
(e.g. drones). However, due to industrial dispersion, the unknown
parameter vectors θi,0 ∈ Rnθi can of course be different for each i, as
well as the order of the transfer functions Gi and Hi. Consequently,
it will be necessary to identify a model for each of the systems Si
in the sequel.

In this paper, we consider the type of interconnections used in
formation control or multi-agent systems (see e.g. Fax and Mur-
ray, 2004; Korniienko et al., 2014). As shown in (2), each system
Si is operated with a decentralized controller Ki(z). In (2), the
signal yref ,i is a reference signal that will be computed via (3).
The matrix A and the vector B in (3) represent the interconnec-
tion (flow of information) in the network and we have ȳref =

(yref ,1, yref ,2, . . . , yref ,Nmod )
T and ȳ = (y1, y2, . . . , yNmod )

T . The signal
refext is a (scalar) external reference signal that should be followed
by all outputs yi and that is generally only available at one node of
the network.

As an example, let us consider the network in Fig. 1. In this
network, we have Nmod = 6 systems/modules, all of the form (1)
and all operated as in (2) with a decentralized controller Ki. These
local closed loops are represented by a circle/node in Fig. 1 and
are further detailed in Fig. 2 (consider ri = 0 for the moment in
this figure). The objective of this network is that the outputs yi of
all modules follow the external reference refext even though this
reference is only available at Node 1. For this purpose, a number
of nodes are allowed to exchange information (i.e. their measured
output) with some other neighboring nodes. The arrows between
the nodes in Fig. 1 indicate the flow of information. For example,
Node 5 receives the output of two nodes (i.e. Nodes 3 and 4)
and sends its output (i.e. y5) to three nodes (Nodes 3, 4 and 6).
The reference signal yref ,i of Node i will be computed as a linear
combination of the received information atNode i. ForNode5, yref ,5
will thus be a linear combination of y3 and y4. More precisely, for
all outputs yi to be able to follow the external reference refext , A
and B in (3) are chosen as (Fax & Murray, 2004; Korniienko et al.,
2014):

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0

1/3 0 1/3 1/3 0 0
0 0.5 0 0 0.5 0
0 0.5 0 0 0.5 0
0 0 0.5 0.5 0 0
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ B = (1, 0, . . . , 0)T .

1 Wewill nevertheless see in the sequel thatmany of the results of this paper also
apply to the case of spatially-correlated noises ei i.e. to the casewhere (4) holdswith
a matrixΛ = ΛT > 0 that is not necessarily diagonal.



Download English Version:

https://daneshyari.com/en/article/7109062

Download Persian Version:

https://daneshyari.com/article/7109062

Daneshyari.com

https://daneshyari.com/en/article/7109062
https://daneshyari.com/article/7109062
https://daneshyari.com

