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The Reach Control Problem (RCP) is a fundamental problem in hybrid control theory. The goal of the RCP is
to find a feedback control that drives the state trajectories of an affine system to leave a polytope through
apredetermined exit facet. In the current literature, the notion of leaving a polytope through a facet has an
ambiguous definition. There are two different notions. In one, at the last time instance when the trajectory
is inside the polytope, it must also be inside the exit facet. In the other, the trajectory is required to cross
from the polytope into the outer open half-space bounded by the exit facet. In this paper, we provide a
counterexample showing that these definitions are not equivalent for general continuous or smooth state
feedback. On the other hand, we prove that analyticity of the feedback control is a sufficient condition for
equivalence of these definitions. We generalize this result to several other classes of feedback control
previously investigated in the RCP literature, most notably piecewise affine feedback. Additionally, we
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clarify or complete a number of previous results on the exit behaviour of trajectories in the RCP.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the past period, there has been a significant effort to formal-
ize the mathematical foundations of switched and hybrid control
systems. Due to the discontinuous nature of such systems, fun-
damental results guaranteeing the existence and uniqueness of
solutions of classical ODEs with continuous vector fields no longer
hold automatically. A new theory of existence and uniqueness of
solutions of switched and hybrid systems has been formulated by,
among others, Heemels, Camlibel, van der Schaft, and Schumacher
(2002), Imura and van der Schaft (2000) and Lygeros, Johansson,
Simi¢, Zhang, and Sastry (2003).

An additional property specific to switched and hybrid systems
is Zeno behaviour, in which a trajectory, even if guaranteed to
exist and be unique, undergoes an infinite number of switches,
i.e., discontinuous changes in the governing vector field, in a finite
time interval. This property has been the subject of intense recent
research, e.g., by Ames and Sastry (2005), Camlibel (2008), Goebel
and Teel (2008) and Heymann, Lin, Meyer, and Resmerita (2005).

Additionally, a number of classical control notions such as
controllability, observability, and Lyapunov stability do not apply
to systems governed by discontinuous vector fields. There has
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been significant work to extend these concepts to switched and
hybrid systems (see, e.g., Branicky, 1998; Ezzine & Haddad, 1988;
Petterson & Lennartson, 1996). For a comprehensive treatment of
discontinuous dynamical systems see the work by Cortés (2008)
and Liberzon (2003).

This paper follows the above line of research on deepening
the mathematical foundations of hybrid control system, but here
we focus on reach control theory. The central problem in this
theory is the Reach Control Problem (RCP) (Habets, Collins, & van
Schuppen, 2006; Roszak & Broucke, 2006). Further work appeared
in Ashford and Broucke (2013), Belta, Habets, and Kumar (2002),
Broucke (2010), Broucke and Ganness (2014), Habets and van
Schuppen (2004), Helwa and Broucke (2013, 2014), Helwa and
Broucke (2015), Helwa, Lin, and Broucke (2016), Moarref, Ornik,
and Broucke (2016), Ornik and Broucke (2017), Semsar-Kazerooni
and Broucke (2014) and Wu and Shen (2016). The goal of the RCP is
to find a feedback control u such that, for any initial state xq inside
a polytope P, the trajectory ¢(-, xo) of an affine control system
X = Ax + Bu + a leaves P through a predetermined exit facet 7 in
finite time, without first leaving P through any other facets. While
there is an extensive literature on reach control theory, this is the
first paper that focuses solely on a formal and complete discussion
of existence, uniqueness, and behaviour of solutions.

The intention is for the RCP to serve as a building block in
a hybrid control strategy that rests upon triangulating the state
space to achieve some control objective. For example, if the system
state is desired to go from one area of the state space to another,
this can be achieved by partitioning the entire state space into
simplices or polytopes, and constructing a sequence of polytopes
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Fig. 1. An example of a reach control approach to solving a control problem. The
state space is given in red, and the control objective is to guide the system state from
point A on the left to point B on the right. The state space is cut into polytopes, and
the goal is to define a controller on each polytope such that the desired sequences
of polytopes (denoted by blue arrows) is followed. The exit facets of all polytopes
in sequence are marked in purple. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

such that the state trajectories move through the polytopes in the
desired order, until they finally reach the last polytope (see Fig. 1).

Numerous applications of the RCP have already been identified.
These include biomolecular networks (Belta et al., 2002), control
of aircraft (Belta & Habets, 2006), process control (Haugwitz &
Hagander, 2007), aggressive manoeuvres of mechanical systems
(Vukosavljev & Broucke, 2014), quadcopter motion (Vukosavljev,
Jansen, Broucke, & Schoellig, 2016), and automatic parallel parking
of vehicles (Ornik, Moarref, & Broucke, 2017).

This paper focuses on what happens when trajectories transi-
tion from one polytope to the next. In order to make the transitions
between polytopes work, it is not only necessary for a trajectory
to exit a polytope P with its last point in P lying on the desired
exit facet Fy. We must ensure that this exit will simultaneously
result in the trajectory entering the next polytope in the desired
sequence. This paper investigates a fundamental question in reach
control theory which has not been addressed by previous work on
general hybrid or switched systems: what is the appropriate notion
of leaving a polytope or a simplex through a facet?

In Habets and van Schuppen (2001, 2004), it was required that
velocity vectors must point strictly outside the polytope at points
in the exit facet. This condition implies that a trajectory arriving at
the exit facet will immediately enter the open half-space outside
‘P and bounded by the exit facet. Sufficient conditions were given
in Habets and van Schuppen (2004) for a Lipschitz continuous
feedback to solve this problem. The proof assumes strict inward
or outward conditions on velocity vectors along the facets of the
polytope. When these conditions are not strict, certain pathologies
can arise, as this paper will show, and arguments about whether
trajectories lie in certain half-spaces with respect to facets are
considerably more delicate. Lemma 3 of Roszak and Broucke (2006)
regards trajectories exiting a polytope via a facet but without
necessarily crossing into the outer open half-space. In Section 3.4,
we provide a complete proof of a stronger version of this result.

One goal of this paper is to explore the relationship between
the two notions for exiting a polytope. We consider the following
question: Is it possible for a trajectory to leave a polytope P but
without crossing into an outer half-space? When a trajectory exits
‘P but does not cross into an outer half-space, we say it chatters.
A second goal of the paper is to identify appropriate classes of
feedback controls that do not allow chattering.

The paper is organized as follows. In Section 2, we define the
Reach Control Problem and discuss the nuanced notions of exit-
ing through a facet, crossing a facet, and chattering. In Section 3,
we explore conditions on the vector field to disallow chattering.
Section 3.1 discusses chattering under various feedback classes
previously studied for the RCP. Section 3.2 focuses on the impor-
tant class of continuous piecewise affine feedbacks. In Section 3.3,
we apply these results to the Output Reach Control Problem
(ORCP), first studied in Kroeze and Broucke (2016). Section 3.4 fur-
ther discusses affine feedback control. Finally, Section 4 explores
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Fig. 2. Anillustration of notation used in the paper. The polytope P = co{vo, v1, v2}
is given by vertices Vs = {vg, v1, v2} and facets Fy, F1, and F», with each facet
indexed by the vertex it does not contain. h; is the unit normal vector pointing out of
S. Fp is designated as the exit facet. Because of their previously discussed geometric
meaning, the cones C(v;) are illustrated attached at each v;. However, by (2), each
cone C(x) has its apex at 0.

discontinuous piecewise affine feedback, as developed in Broucke
and Ganness (2014).

Notation. Let  C R" be a set. The complement of £ is K¢ := R"\ K,
and the set difference of two sets K1, K, C R" is denoted by K1\ Ks.
The closure of set K is K. For two vectors x, y € R", x - y denotes
the inner product of the two vectors. The notation co{vy, vo, ...}
denotes the convex hull of a set of points v; € R", and aff(K) is the
affine hull of set K.

2. Problem statement

Consider an n-dimensional polytope P := cofvo, ..., v,} with
vertex set V := {vo, ..., vp}. A facet of P is an (n — 1)-dimensional
face of P. Let Fy, Fi, ..., F denote the facets of P. The facet 7 is
referred to as the exit facet, while 71, ..., F, are called restricted
facets.Let] = {1, ..., r} and let h; be the unit normal to each facet
F; pointing outside the polytope. We note that each point on the
boundary of P can belong to one or more facets. An example is
given in Fig. 2, where vertices of P belong to two facets, and other
points on the boundary of P to one.

We consider the affine control system defined on P:

X =Ax+Bu+a, (1)

where A € R™ a € R", B € R™", and rank(B) = m. Let
B = Im(B), the image of B. Let ¢(-, xo) denote the trajectory of
(1) under some control law u starting from Xy € P. The standard
formulation of the RCP is as follows (Habets et al., 2006; Roszak &
Broucke, 2006).

Problem 1 (Reach Control Problem (RCP)). Consider system (1)
defined on P. Find a map u : ? — R™ such that for every xo € P,
there exist T > 0 and ¢ > 0 such that

(i) o(t,xp) € Pforallt € [0, T],
(ii) @(T, x9) € Fo, and
(iii) @(t,x0) ¢ Pforallt € (T, T + ¢).

We emphasize that the current setting of the RCP as given in
Problem 1 does not stipulate that a system trajectory should leave
P immediately after first entering the exit facet 7. Indeed, it is
allowed for a system trajectory to touch the exit facet 7o and then
go back into P before leaving through 7, at some later point.
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