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a b s t r a c t

This paper considers a sequential sensor scheduling and remote estimation problemwith one sensor and
one estimator. The sensor makes sequential observations about the state of an underlying memoryless
stochastic process, and makes a decision as to whether or not to send this measurement to the estimator.
The sensor and the estimator have the common objective of minimizing expected distortion in the
estimation of the state of the process, over a finite time horizon. The sensor is either charged a cost for each
transmission or constrained on transmission times. As opposed to the prior work where communication
between the sensor and the estimator was assumed to be perfect (noiseless), in this work an additive
noise channel with fixed power constraint is considered; hence, the sensor has to encode its message
before transmission. Under some technical assumptions, we obtain the optimal encoding and estimation
policies within the piecewise affine class in conjunction with the optimal transmission schedule. The
impact of the presence of a noisy channel is analyzed numerically based on dynamic programming. This
analysis yields some rather surprising results such as a phase-transition phenomenon in the number of
used transmission opportunities, which was not encountered in the noiseless communication setting.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The communication scheduling and remote state estimation
problem arises in the applications of wireless sensor networks,
such as environmental monitoring and networked control sys-
tems. As an example of environmental monitoring, researchers at
the National Aeronautics and Space Administration (NASA) Earth
Science group are interested in monitoring the evolution of the
soil moisture, which is used in weather forecast, ecosystem pro-
cess simulation, etc. (Shuman et al., 2010). In order to achieve
that goal, the sensor networks are built over an area of interest.
The sensors collect data on the soil moisture and send them to
the decision unit at NASA via wireless communication. The de-
cision unit at NASA forms estimates on the evolution of the soil
moisture based on the messages received from the sensors.
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Similarly, in networked control systems, where the objective is to
control some remote plants, sensor networks are built to measure
the states of the remote plants. Sensors transmit their measure-
ments to the controller via awireless communication network, and
the controller estimates the state of the remote plant and generates
a control signal based on that estimate (Hespanha, Naghshtabrizi,
& Xu, 2007). In both scenarios, the quality of the remote state
estimation strongly affects the quality of decision making at the
remote site, that is, weather prediction or control signal genera-
tion. The networked sensors are usually constrained by limits on
power (Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002). They
are not able to communicate with the estimator at every time step
and thus, the estimator has to produce its best estimate based
on the partial information received from the sensors. Therefore,
the communication between the sensors and the estimator should
be scheduled judiciously, and the estimator should be designed
properly, so that the state estimation error is minimized under the
communication constraints.

Research on the general sensor scheduling problem dates back
to the 1970s. In one of the earliest works (Athans, 1972), the
problem formulation is such that only one out of several sensors
canbe selected at each instant of time to observe the output of a lin-
ear stochastic system. Using the measurements over a finite time
interval, the goal is to form prediction on some future state of the
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system. Furthermore, each sensor is associatedwith a certainmea-
surement cost. The author proposed an off-line deterministic sen-
sor scheduling strategy that minimizes the sum of measurement
cost over the time interval and prediction error. Gupta, Chung, B.
Hassibi, andMurray (2006) studied the sensor scheduling problem
over infinite timehorizon. Similar to the problem in Athans (1972),
only one sensor can be selected at each instant of time. However,
there is no measurement cost associated with each sensor. The
authors proposed an off-line stochastic sensor scheduling strategy
such that the expected steady state estimation error is minimized.
Yang and Shi (2011) studied the off-line sensor scheduling problem
where there is only one sensor observing the state of a linear
stochastic system. The sensor can communicate with the remote
estimator only a limited number of times. The objective was to
minimize the cumulative estimation error over a finite time hori-
zon. It was shown that the optimal sensor scheduling strategy is
to distribute the limited communication opportunities uniformly
over the time horizon. The authors of the papers discussed above
considered off-line sensor scheduling problems. ‘‘Off-line sensor
scheduling’’ means the sensor is scheduled to take observation or
conduct communication based on some a priori information about
the system (e.g. statistics of random variables, system matrices).
The on-line information (e.g. sensor’s observation, battery’s energy
level) is not taken into account when making schedules. Some
other selected work on off-line sensor scheduling problems can be
found in Mo, Garone, Casavola, and Sinopoli (2011), Ren, Cheng,
Chen, Shi, and Sun (2013) and Shi and Zhang (2012).

With the advances in hardware devices, sensors are endowed
with stronger computational capabilities. Consequently, the sen-
sors are able to make schedules based on all the information
they have (a priori information as well as on-line information),
which motivates the formulation of on-line sensor scheduling
problems. Åström and Bernhardsson (2002) considered a state
estimation problem with a first-order stochastic system. They
compared the estimation error over infinite time horizon obtained
by periodic sampling and threshold event-triggered sampling. The
periodic sampling is one of the off-line sensor scheduling strategies
while the threshold event-triggered sampling is one of the on-line
sensor scheduling strategies. They showed that the threshold
event-triggered sampling, which is also called ‘‘threshold-based
communication strategy’’, leads to better performance in state esti-
mation compared with periodic sampling. The global optimality of
threshold-based communication strategy in this context is proved
later by Nar and Başar (in press). Imer and Başar (2010) consid-
ered the on-line sensor scheduling and remote state estimation
problem over a finite time horizon. In the formulation, the sensor
is restricted to communicate only a limited number of times.
By considering the communication strategies within the class of
threshold-based strategies, the paper has shown that there exists
a unique threshold-based communication strategy achieving the
best performance on remote state estimation. Furthermore, the
optimal threshold can be computed by solving a dynamic program-
ming equation. Bommannavar and Başar (2008) later extended
the result of Imer and Başar (2010) to multi-dimensional systems.
The continuous-time version of the problem in Imer and Başar
(2010) has been studied byRabi,Moustakides, andBaras (2006). Xu
and Hespanha (2004) considered the networked control problem
involving state estimation and communication scheduling, which
can be viewed as a sensor scheduling and remote estimation
problem. They fixed the estimator to be Kalman-like and designed
an event-triggered sensor that minimizes the time average of the
sum of the communication cost and estimation error over infi-
nite time horizon. They showed that the optimal communication
strategy is deterministic and stationary, and is a function of the
estimation error. Wu, Jia, Johansson, and Shi (2013) considered the
sensor scheduling and estimation problem subject to constraints

on the average communication rate over infinite time horizon. The
authors assumed that the sensor has noisy observations on the
system state. By restricting the sensor scheduling strategies to the
threshold event-triggered class, they derived the exact minimum
mean square error (MMSE) estimator. However, the exact MMSE
estimator is nonlinear and thus computationally intractable. Under
a Gaussian assumption on the a priori distribution, the authors
derived an approximate MMSE estimator, which is Kalman-like.
Based on the approximated MMSE estimator, the authors derived
conditions on the thresholds so that the average sensor communi-
cation rate will not exceed its upper bound. You and Xie (2013)
extended the work in Wu et al. (2013) by deriving conditions
on the thresholds so that the estimator is stable. Han, Mo, Wu,
Weerakkody, Sinopoli, and Shi (2015) showed that if the sensor
is fixed to apply some stochastic event-triggered strategy, then
the exact MMSE estimator is Kalman-like. Other selected work
on remote estimation with event-based sensor operations can
be found in Shi, Elliott, and Chen (2016) and Weerakkody, Mo,
Sinopoli, Han, and Shi (2013). The work in Han et al. (2015),
Wu et al. (2013) and You and Xie (2013) can also be viewed as
Kalman-filtering with scheduled observations, which is related to
Kalman-filtering with intermittent observations studied in Sinop-
oli, Schenato, Franceschetti, Poolla, Jordan, and Sastry (2004) and
You, Fu, and Xie (2011).

The approaches of Wu et al. (2013) and Xu and Hespanha
(2004) involved fixing the communication strategies or estimation
strategies to be of a certain type and then deriving the correspond-
ing optimal estimation strategies and communication strategies,
respectively. The approach of Imer and Başar (2010), on the other
hand, is to derive the jointly optimal communication strategies
and estimation strategies. Similarly, Lipsa andMartins (2011) con-
sidered the sensor scheduling and remote estimation problem
where the sensor is not constrained by communication times but is
charged a communication cost. They proposed a threshold event-
triggered sensor and a Kalman-like estimator and proved that the
proposed sensor and estimator are jointly optimal, minimizing
the sum of communication cost and estimation error over a finite
time horizon. Nayyar, Başar, Teneketzis, and Veeravalli (2013)
considered a similar problem where the sensor is equipped with
an energy harvesting sensor. In the work of Nayyar et al. (2013),
the problem formulation is such that the sensor is constrained by
the energy level of the battery and is also charged a communication
cost. It is shown in Nayyar et al. (2013) that an energy dependent
threshold event-triggered sensor and a Kalman-like estimator are
jointly optimal. Hence, the result of Nayyar et al. (2013) can be
viewed as generalization of the results of Imer and Başar (2010)
and Lipsa and Martins (2011). In both Lipsa and Martins (2011)
and Nayyar et al. (2013), majorization theory was used to prove
the optimality of the respective results, which is closely related to
the approach in Hajek, Mitzel, and Yang (2008).

It is worth drawing attention to the two different types of
constraints that arise in the works mentioned above – hard and
soft constraints – as featured in the problem setups of Imer and
Başar (2010) and Lipsa andMartins (2011). In the problem of Imer
and Başar (2010), the sensor can only communicate for a pre-
specified number of times. Such a communication constraint is
called hard constraint. In the work of Lipsa and Martins (2011),
however, the sensor is charged a communication cost. This kind of
communication constraint is called soft constraint. In the problem
with hard constraint, the communication strategy must take the
remaining communication opportunities as a variable and sched-
ule no communication if there is no remaining opportunity. Such
communication strategies guarantee that the number of transmis-
sions made over the time horizon of interest will not exceed the
given constraint. In the problem with soft constraint, however,
the sensor is not constrained by the number of transmissions,
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