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a b s t r a c t

Dynamic networks are structured interconnections of dynamical systems (modules) driven by external
excitation and disturbance signals. In order to identify their dynamical properties and/or their topology
consistently from measured data, we need to make sure that the network model set is identifiable. We
introduce the notion of network identifiability, as a property of a parametrized model set, that ensures
that different network models can be distinguished from each other when performing identification on
the basis of measured data. Different from the classical notion of (parameter) identifiability, we focus on
the distinction between networkmodels in terms of their transfer functions. For a given structuredmodel
setwith a pre-chosen topology, identifiability typically requires conditions on the presence and location of
excitation signals, and on presence, location and correlation of disturbance signals. Because in a dynamic
network, disturbances cannot always be considered to be of full-rank, the reduced-rank situation is also
covered, meaning that the number of driving white noise processes can be strictly less than the number
of disturbance variables. This includes the situation of having noise-free nodes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic networks are structured interconnections of dynamic
systems and they appear inmany different areas of science and en-
gineering. Because of the spatial connections of systems, as well as
a trend to enlarge the scope of control andoptimization, interesting
problems of distributed control and optimization have appeared in
several domains of applications, among which robotic networks,
smart grids, transportation systems, multi agent systems etcetera.
An example of a (linear) dynamic network is sketched in Fig. 1,
where excitation signals r and disturbance signals v, together with
the linear dynamic modules G induce the behavior of the node
signals w.

When structured systems like the one in Fig. 1 become of
interest for analyzing performance and stability, it is appropriate to
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also consider the development of (data-driven) models. In system
identification literature, where the majority of the work is focused
on open-loop or feedback controlled (multivariable) systems, there
is an increasing interest in data-driven modeling problems related
to dynamic networks. Particular questions that can be addressed
are, e.g.:

(a) Identification of a single selected module Gji, on the basis of
measured signals w and r;

(b) Identification of the full network dynamics;
(c) Identification of the topology of the network, i.e. the Boolean

interconnection structure between the several nodes wi.

The problem (a) of identifying a single module in a dynamic
network has been addressed in Van den Hof, Dankers, Heuberger,
and Bombois (2013), where a framework has been introduced for
prediction error identification in dynamic networks, and classical
closed-loop identification techniques have been generalized to the
situation of structured networks. Using this framework, predictor
input selection (Dankers, Van den Hof, Heuberger, & Bombois,
2016) has been addressed to decide on which node signals need
to be measured for identification of a particular network mod-
ule. Errors-in-variables problems have been addressed in Dankers,
Van den Hof, Bombois, and Heuberger (2015) to deal with the
situation when node signals are measured subject to additional
sensor noise.

The problem (b) of identifying the full network can be re-
cast into a multivariable identification problem, that can then be
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Fig. 1. Dynamic networkwhere node variableswi are the outputs of the summation
points indicated by circles.

addressed with classical identification methods (Söderström &
Stoica, 1989). Either structuredmodel sets can then be used, based
on an a priori known interconnection structure of the network,
or a fully parametrized model set, accounting for each and every
possible link between node signals.

The problem (c) of topology detection has been addressed in
e.g. Materassi and Salapaka (2012) whereWiener filters have been
used to reconstruct the network topology. In Chiuso and Pillonetto
(2012) a Bayesian viewpoint has been taken and regularization
techniques have been applied to obtain sparse estimates. Topology
detection in a large scale network has been addressed in Sanandaji,
Vincent, andWakin (2011, 2012) using compressive sensingmeth-
ods, and in a biological network in Yuan (2012) and Yuan, Stan,
Warnick, and Gonçalves (2011) using also sparse estimation tech-
niques. Causal inference has been addressed in Quinn, Kiyavash,
and Coleman (2011).

Not only in problem (b) but also in problem (c), the starting
point is most often to model all possible links between node
signals, in other words to parametrize all possible modules Gji in
the network. Howeverwhen identifying such a full networkmodel,
care has to be taken that different network models can indeed be
distinguished on the basis of the data that is available for identifi-
cation. In Adebayo et al. (2012) and Gonçalves andWarnick (2008)
specific local conditions have been formulated for injectivity of the
mapping from the network transfer function (transfer from exter-
nal signals r to node signals w) to network models. This is done
outside an identification context and without considering (non-
measured) disturbance inputs. Uniqueness properties of a model
set for purely stochastic networks (without external excitations r)
have been studied in Hayden, Yuan, and Gonçalves (2013) and
Materassi and Salapaka (2012) where the assumption has been
made, like in many of the works in this domain, that each node
is driven by an independent white noise source.

In this paper we are going to address the question: under which
conditions on the experimental setup and choice of model set,
different network models in the set can be distinguished from
each other on the basis of measured data? The typical conditions
will then include presence and location of external excitations,
presence of andmodeled correlations betweendisturbance signals,
and modeled network topology.

This question will be addressed by introducing the concept
of network identifiability as a property of a parametrized set of
networkmodels.Wewill study this question for the situations that

• Disturbance terms vi are allowed to be correlated over time
but also over node signals, i.e. vi and vj, i ̸= j can be
correlated.

• The vector disturbance process v := [vT
1 vT

2 · · · ]
T can be of

reduced-rank, i.e. has a driving white noise process that has
a dimension that is strictly less than the dimension of v. This
includes the situation that some disturbance terms can be 0.

• Direct feedthrough terms are allowed in the network
modules.

The presence of possible correlations between disturbances,
limits the opportunities to break down the modeling of the net-
work into several multi-input single-output MISO) problems, as
e.g. done in Van den Hof et al. (2013). For capturing these cor-
relations among disturbances all relevant signals will need to be
modeled jointly in a multi-input multi-output (MIMO) approach.

If the size of a dynamic network increases, the assumption of
having a full rank noise process becomes more and more unrealis-
tic. Different node signals in the network are likely to experience
noise disturbances that are highly correlated with and possibly
dependent on other node signals in its direct neighborhood. One
could think e.g. of a network of temperature measurements in
a spatial area, where unmeasured external effects (e.g. wind) af-
fect all measured nodes in a strongly related way. In the iden-
tification literature little attention is paid to this situation. In a
slightly different setting, the classical closed-loop system (Fig. 3)
also has this property, by considering the input to the process
G to be disturbance-free, rendering the two-dimensional vector
noise process of reduced-rank. Closed-loop identificationmethods
typically work around this issue by either replacing the external
excitation signal r by a stochastic noise process, as e.g. in the
joint-IO method (Caines & Chan, 1975), or by only focussing on
predicting the output signal and thus identifying the plant model
(and not the controller), as e.g. in the direct method (Ljung, 1999).
In econometrics dynamic factor models have been developed to
deal with the situation of high dimensional data and rank-reduced
noise (Deistler, Anderson, Filler, Ch. Zinner, & Chen, 2010; Deistler,
Scherrer, & Anderson, 2015).

The notion of identifiability is a classical notion in system iden-
tification, but the concept has been used in different settings. The
classical definition as present in Ljung (1976) and Söderström,
Ljung, and Gustavsson (1976) is a consistency-oriented concept
concerned with estimates converging to the true underlying sys-
tem (system identifiability) or to the true underlying parameters
(parameter identifiability). In the current literature, identifiability
has become a property of a parametrized model set, referring to a
unique one-to-one relationship between parameters and predictor
model, see e.g. Ljung (1999). As a result a clear distinction has been
made between aspects of data informativity and identifiability. For
an interesting account of these concepts see also the more recent
work (Bazanella, Gevers, & Miskovic, 2010). In the current liter-
ature the structure/topology of the considered systems has been
fixed and restricted to the commonopen-loop or closed-loop cases.
In our network situationwe have to deal with additional structural
properties in our models. These properties concern e.g. the choices
where external excitation and disturbance signals are present,
and how they are modeled, whether or not disturbances can be
correlated, and whether modules in the network are known and
fixed, or parametrized in the model set. In this paper we will
particularly address the structural properties of networks, and
we will introduce the concept of network identifiability, as the
ability to distinguish networks models in identification. Rather
than focussing on the uniqueness of parameters, we will focus on
uniqueness of network models.

We are going to employ the dynamic network framework as
described in Van den Hof et al. (2013), and we will introduce
and analyze the concept of network identifiability of a parametrized
model set. We will build upon the earlier introduction of the prob-
lem and preliminary results presented in Weerts, Dankers, and
VandenHof (2015) and Weerts, VandenHof, andDankers (2016b),
but we will reformulate the starting points and definitions, as
well as extend the results to more general situations in terms
of correlated noise, reduced-rank noise, and absence of delays in
network modules.
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