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a b s t r a c t

This paper considers multiple resolvable group target estimation under clutter environment. The pro-
posed algorithm involves two aspects: target estimation and group state (group size, shape, etc.) estima-
tion. First, we propose dynamic models and observation function for the group targets. Second, we derive
the connection relation of individual targets through the predicted target states. In the following step, we
combine the graph theory with the group targets and build the adjacency matrix of the estimated state
set. The connection information is used to correct the collaboration noise and estimate the target states.
For group estimation, we focus on the number of subgroups, the group states and the group sizes. Finally,
several examples are given to verify the proposed algorithm, respectively.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Group target tracking has been received much attention in
recent years. The main reason is due to the rapid development
of new sensor technology, which results in the rich information
collected from targets. In traditional radar tracking community,
it is well known that a target is assumed to be a point source,
called a point source target (Bar-Shalom, 1978; Bar-Shalom & Tse,
1975; Reid, 1979). As the limited ability of detection, the target
is naturally shown as a point source on radar screen due to the
hundreds, even thousands of kilometers away. For a point source
target, we focus on its moving point states such as acceleration,
velocity and position. With the progress of the advanced sensor
technologies, higher resolution andmore sensitive capabilities can
be available. For instance, modern infrared sensor using super-
conductive technology may receive muchmore shape information
from a target. This means that multiple measurements may be
gotten from a point source target. In this case, tracking and data
association under the ‘‘one target one detection’’ assumption is
no longer hold (Feldmann, Fränken, & Koch, 2011; Koch, 2008;
Koch & Keuk, 1997; Oliver, 1995). These measurements not only
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reflect the target state but also its shape. We call the target as
an extended target. Another scenario is when multiple targets
forming a formationwith a close distance between any two targets,
coined as the group targets.

The extended targets and group targets are usually confronted
with the same problems in dynamic modeling, state and shape
estimation. Specifically, first, they have certain shapes and thus
produce multiple measurements. Second, these measurements
have close distance compared to the detection gate, which results
in the traditional association based approaches intractable. Thus,
estimating the states of individual targets in group or the parts in
extended target become difficult. For simplicity, we call these two
kinds of targets as group targets and do not make any distinctions.

To the best knowledge of authors, Koch proposed the group
target tracking in the classic Bayesian framework (Koch & Keuk,
1997). A key conception of symmetric and positively definite (SPD)
matrix described by a randommatrix is adopted to show the shape
of group targets. The SPD is in essentially an ellipsoidal shape. The
core problemof the research is to estimate the randommatrix from
the received measurements. It has been shown that if the prior
distribution of the random matrix is assumed to follow inverted
Wishart related distributions and the transition density of the
target extension (shape) is with Wishart distribution, then the
updated extension can be approximated by an inverted Wishart
distribution. Further work focused on non-ellipsoidal extended
target by combinated of multiple ellipsoidal sub-objects (targets)
where each target is represented by a random matrix (Lan & Li,
2011). Baum et al. described the extended target using the random
super-surface model (Baum & Hanebeck, 2011; Baum, Noack, &
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Hanebeck, 2010; Hanebeck & Baum, 2009). E. Richter et al. tracks
multiple extended target using Markov chain Monte Carlo ap-
proaches (Richter, Obst, Noll, & Wanielik, 2011). In classic estima-
tion theory, most existing algorithms assume that the number of
targets in the groups is fixed.

Another kind of approaches can be categorized as the ran-
dom finite set (RFS) based algorithm. Mahler proposed the
group target tracking algorithm in the finite set statistics (FISST)
paradigm (Mahler, 2009a,b). Refs. Lundquist, Granström, and
Orguner (2011) and Orguner, Lundquist, and Granström (2011)
proposed the CPHD filter approaches. Ref. Granström and Orguner
(2012) combined the SPD matrix with the PHD filter and gener-
alized the PHD filer to the group target tracking. The key of the
extended PHD filter is to partition the measurement set. Lian, Han,
and Liu (2010) proposed the PHD filtering algorithm for group
targets by using the MCMC sampling method. Swain and Clark
(2011) proposed a first-moment recursion for a single-group filter.
Ref. Gning, Mihaylova, Maskell, Pang, and Godsill (2011) combined
the graph to the group tracking by learning the evolving graph
model for the groups and estimate the group state by using aMonte
Carlo method, but it does not deal with the uncertain number of
targets. Ref. Ristic and Sherrah (2009) achieved a Bernoulli filter
for an extended object. The approach proposed in Ref. Beard et al.
(2015) is based on modeling the multi-target state as a general-
ized labeled multi-Bernoulli (GLMB), combined with the gamma
Gaussian inverseWishart distribution for a single extended target.
The RFS theory has a splendid paradigm and tackles these two
issues together. The RFS based algorithms can avoid the association
step. In our idea, this characteristic is more suitable to group target
tracking.

Basically, the above group targets are assumed to be unresolv-
able. This means the group targets is located in the same resolu-
tion unit, so it is very difficult to discriminate individual targets
and estimate the dependent relation between them. For existing
algorithms, the core idea is to adopt the randommatrix to describe
the shape of group targets. Nevertheless, if the group targets are
close to sensors or sensors have higher resolution ability, they
may become resolvable. Thus, estimating the dependent relation
of targets becomes available and even necessary.

In this paper, we focus on multiple resolvable group targets.
That is, individual targets are in different resolution units of the
sensor. Besides, we consider multiple subgroups (in a big group)
using multi-Bernoulli RFS filter and graph theory. We classify the
issue of group target estimation into target estimation and group
estimation. The former includes estimation of the number of tar-
gets, individual target states, and the dependent relation. The latter
group estimation includes the number of subgroups, the subgroup
states (centroid), the sizes and the structures of individual sub-
graphs.

The challenge is that the group targets are dependent, while
most existing results of the RFS algorithms are given under the
independent condition. A basic problem is to consider the problem
ofwhether themulti-Bernoulli filter still available in this condition.
This is the second part of the paper. We show that under the
given dynamicmodels and some assumptions. Themulti-Bernoulli
filter for dependent group targets is equivalent to original multi-
Bernoulli filter under independent case. In sum up, our main con-
tributions are listed as follows.

• We build dynamic model for the resolvable group targets.
The movement of group targets not only depends on indi-
vidual member states, but also the target birth and spawned
models. We propose the linear model and nonlinear for
multiple subgroups, respectively. Moreover, several propo-
sitions are given to be used to estimate individual target
states. Besides, under some condition, we show the original
multi-Bernoulli still can be available.

• By combining graph theory to the group targets, we derive
the group states and structures. The relationship between
group targets is expressed by an adjacency matrix which
reflects the dependent relation of the members in the group
targets. We also use the adjacency matrix to recover the
structures of individual subgroups.

• We estimate the number of targets and subgroups by im-
porting the conception of connected graph from the es-
timated adjacency matrix. Besides, we also consider the
dependent relation of each subgroup. This work is rarely
given in the existing work.

The structure of this paper is listed as follows. Section 2 is back-
ground for random finite sets and related graph theory. Section 3
gives the graphical structure and dynamicmodel for group targets.
In Section 4, we focus on the target estimation and group estima-
tion. By combining the graph theory to group targets and building
adjacency matrix, we consider the estimation algorithm for the
group targets based on the multi-Bernoulli filter and graph theory.
Two propositions are proposed in this section. Section 5 proposed
two experiments of linear and nonlinear systems to verify the our
provided algorithm. Section 6 concludes this paper.

2. Background

2.1. Random finite sets

The theory of RFS considers the multi-target tracking systems
using the conception of sets. Specifically, the states of multi-target
and measurements from a sensor can be modeled by the state
RFS and measurement RFS. Here the meaning of the finite implies
that the number of members in the RFS is with a limited number.
Besides, the number of members is random in a discrete space of
integers, while the state is usually defined in a continuous space.
So we can describe the two RFSs in the following forms (Mahler,
2007):

Xk = {xk,1, . . . , xk,Nk} ∈ F(X ) (1)

Zk = {zk,1, . . . , zk,Mk} ∈ F(Z) (2)

where Xk and Zk are the state RFS and measurement RFS, respec-
tively. X ⊆ Rnx and Z ⊆ Rnz are the state space and observation
space.F(X ) andF(Z) show the spaces of all finite subsets ofX and
Z .

The state RFS can be modeled by Mahler (2007):

Xk = [∪x∈Xk−1Sk|k−1(x)] ∪ [∪x∈Xk−1Bk|k−1(x)] ∪ Γk (3)

where Sk|k−1(x), Bk|k−1(x), and Γk are respectively the RFSs of target
surviving, spawned, and birth.With the RFS variables, our next task
is to model the probability distribution function (pdf) for the RFSs.
In Bayesian framework, two pdfs of the state RFS and themeasure-
ment RFS are needed. Let f (Xk|Xk−1) be the transition function of
the state RFS. Different from the general transition, which shows
the state transition in a continuous state space, the RFS transition
function involves much more information. For example, targets
disappear (death), and new targets may be born.

Suppose that the target surviving, spawned, and birth aremutu-
ally independent. Then, the probability density of the multi-target
state RFS can be given by Mahler (2007):

fk|k−1(Xk|Xk−1) =

∑
W⊆Xk

πT ,k|k−1(W |Xk−1)πΓ ,k(Xk − W ) (4)

where RFS Tk|k−1(x) ≜ Sk|k−1(x)∪Bk|k−1(x),πT ,k|k−1(W |Xk−1), πΓ ,k(·)
are respectively the probability densities of surviving RFS and
spontaneous birth RFSΓk. The equation incorporate the underlying



Download English Version:

https://daneshyari.com/en/article/7109090

Download Persian Version:

https://daneshyari.com/article/7109090

Daneshyari.com

https://daneshyari.com/en/article/7109090
https://daneshyari.com/article/7109090
https://daneshyari.com

