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a b s t r a c t

In this paper, we study a mean–variance optimization problem in an infinite horizon discrete time
discounted Markov decision process (MDP). The objective is to minimize the variance of system rewards
with the constraint ofmean performance. Different frommost ofworks in the literaturewhich require the
mean performance already achieve optimum, we can let the discounted performance equal any constant.
The difficulty of this problem is caused by the quadratic form of the variance function which makes
the variance minimization problem not a standard MDP. By proving the decomposable structure of the
feasible policy space, we transform this constrained variance minimization problem to an equivalent
unconstrained MDP under a new discounted criterion and a new reward function. The difference of the
variances of Markov chains under any two feasible policies is quantified by a difference formula. Based
on the variance difference formula, a policy iteration algorithm is developed to find the optimal policy.
We also prove the optimality of deterministic policy over the randomized policy generated in the mean-
constrained policy space. Numerical experiments demonstrate the effectiveness of our approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The mean–variance optimization is an important problem in
stochastic optimization and its origin can go back to the pioneering
work by H. Markowitz, 1990 Nobel Laureate in Economics, on the
modern portfoliomanagement (Markowitz, 1952). In financial en-
gineering, the mean indicates the return of assets and the variance
indicates the risk of assets. The objective of the mean–variance
optimization is to find an optimal policy such that the mean and
the variance of system rewards are optimized in tradeoff and the
efficient frontier (a curve comprised of Pareto optima) is obtained.

Themean–variance optimization is first proposed in a static op-
timization form in Markowitz’s original paper (Markowitz, 1952),
in which the decision variables are the investment percentage of
securities and the securities returns are described as random vari-
ables with known means and variances. Then, the mean–variance
optimization is further studied in a dynamic optimization form
and Markov decision processes (MDPs) are widely used as an
important analytical model. The difficulty of this problem mainly
comes from the non-additiveness of the variance criterion which
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makes the principle of consistent choice in dynamic programming
invalid (Sobel, 1982; Xia, 2016). Such invalidness means that the
optimal action selection during [t + 1,∞) may be not optimal
for the action selection during [t,∞). In the literature, there are
different ways to study the mean–variance optimization. Many
works studied the variance minimization of MDPs after the mean
performance is alreadymaximized (Guo&Song, 2009;Hernandez-
Lerma, Vega-Amaya, & Carrasco, 1999; Huang & Chen, 2012). For
such problem, the variance minimization problem can be trans-
formed to another standard MDP under an equivalent average or
discounted criterion. There are also studies that use the policy
gradient approach to study the mean–variance optimization when
the policy is parameterized (Prashantha & Ghavamzadeh, 2013;
Tamar, Castro, & Mannor, 2012).

Sobel (1982) gave an early study on the mean–variance op-
timization in a discrete time discounted Markov chain, but no
optimization algorithmwas presented in that paper. Chung (1994)
and Sobel (1994) studied the variance minimization problem in a
discrete time Markov chain with the constraint that the long-run
average performance is larger than a given constant. This problem
was transformed to a sequence of linear programming problems,
which may have concerns of computation efficiency since the
number of sequential problems may be large. Guo, Huang, and
Zhang (2015) and Huo, Zou, and Guo (2017) studied the mean–
variance optimization problem in a continuous timeMarkov chain
with unbounded transition rates and state–action dependent dis-
count factors, where the performance is accumulated until a
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certain state is reached. There are certainly numerous other excel-
lentworks about themean–variance optimization in the literature.
However, most of the works in the literature either require a con-
dition of optimal mean performance or reformulate the problem
as variations of mathematical programming. Although linear pro-
gramming may be used to study the mean–variance optimization
in some cases, it does not utilize the structure of Markov systems
and the efficiency is not satisfactory. Policy iteration is a classi-
cal approach in dynamic programming and it usually has a high
convergence efficiency. There is little work to study the mean–
variance optimization using policy iteration, at the condition that
the mean performance equals a given value.

In this paper, we study a mean–variance optimization problem
in an infinite horizon discrete time discounted Markov chain. The
objective is to find the optimal policy with theminimal variance of
rewards from the policy set in which the discounted performance
equals a given constant. The motivation of this problem can be ex-
plainedwith a financial example. Peoplemay not always choose an
asset portfolio with the maximal expected return, since a portfolio
with big return usually has big risk (quantified by variance). People
always like to seek a portfolio with minimal risk and acceptable
return. The solution with minimal risk and fixed return is called
Pareto optimum. All the Pareto optimal solutions compose a curve
called Pareto frontier, or efficient frontier in financial engineering.

The difficulty of such mean–variance optimization problem
mainly comes from two aspects. The first one is the difficulty
caused by the non-additiveness of the variance criterion, which
makes the mean–variance optimization not a standard MDP and
policy iteration is not applicable directly. Another difficulty comes
from the fact that the policy set with a fixed mean performance
usually has no satisfactory structure, such as that described later
in Theorem 1. For example, the policy set whose long-run average
performance equals a given constant may not be decomposable as
that in Theorem 1. Without such property, dynamic programming
and policy iteration cannot be used for these problems.

In this paper, we use the sensitivity-based optimization theory
to study this nonstandardMDPproblem. For the policy set inwhich
the discounted performance equals a given constant, we prove
that this policy set is decomposable on the action space and the
action can be chosen independently at every state. A difference
formula is derived to quantify the variance difference under any
two feasible policies. The original variance minimization problem
with constraints is transformed to a standard unconstrained MDP
under an equivalent discounted criterion with a new discount
factor β2 and a new reward function, where β is the discount
factor of the original Markov chain. With this equivalent MDP, we
prove the existence of the optimal policy for this mean–variance
optimization problem. A policy iteration algorithm is developed to
find the optimal policy with the minimal variance. The optimality
of deterministic policy is also proved, compared with randomized
policies generated in the mean-constrained policy space. Finally,
we conduct a numerical experiment to demonstrate the effec-
tiveness of our approach. The efficient frontier of this numerical
example is also analyzed.

This paper is a continued work compared with our previous
papers (Xia, 2016, 2017), which aim to minimize the variance of
the long-run average performance of the Markov chain without
considering the constraint of mean performance. The targeted
models in these papers are different, so are themain results. To the
best of our knowledge, this is the first paper that develops a policy
iteration algorithm to minimize the variance of a discrete time
discounted Markov chain at the condition of any given discounted
performance.

2. Problem formulation

We consider a finite MDP in discrete time. Xt is denoted as the
system state at time t , t = 0, 1, . . .. The state space is finite and
denoted as S = {1, 2, . . . , S}, where S is the size of the state space.
We only consider the deterministic and stationary policy d which
is a mapping from the state space to the action space. If the current
state is i, the policy d determines to choose an action a from a
finite action spaceA(i) and a system reward r(i, a) is obtained. The
system will transit to a new state j with a transition probability
p(j|i, a) at the next time epoch, where i, j ∈ S and a ∈ A(i).
Obviously, we have

∑
j∈Sp(j|i, a) = 1. Since d is a mapping in the

state space, we have a = d(i) and d(i) ∈ A(i) for all i ∈ S. We define
the policy space D as the family of all deterministic stationary
policies. For each d ∈ D, P(d) is denoted as a transition probability
matrix and its (i, j)th element is p(j|i, d(i)), and r(d) is denoted as
a column vector and its ith element is r(i, d(i)). We assume that
theMarkov chain is ergodic for any policy inD. The discount factor
of the MDP is β , 0 < β < 1. For initial state i, the discounted
performance of the MDP under policy d is defined as below.

J(d, i) := Ed
i

[
∞∑
t=0

β t r(Xt , d(Xt ))

]
, i ∈ S, (1)

where Ed
i is an expectation operator of the Markov chain at the

condition that the initial state is i and the policy is d. J (d) is an
S-dimensional column vector and its ith element is J(d, i). The
variance of the discounted Markov chain is defined as below.

σ 2(d, i) := Ed
i

[(
∞∑
t=0

β t r(Xt , d(Xt ))

)
− J(d, i)

]2

, i ∈ S. (2)

We observe that σ 2(d, i) quantifies the variance of the limiting
random variable

∑
∞

t=0β
t r(Xt , d(Xt )). σ2(d) is the variance vector

of the discounted Markov chain and its ith element is σ 2(d, i).
Denote λ as a given mean reward function on S. That is, λ is

an S-dimensional column vector and its ith element is denoted as
λ(i), i ∈ S. The set of all feasible policies withwhich the discounted
performance of the Markov chain equals λ is defined as below.

Dλ := {all d ∈ D|J(d, i) = λ(i), for all i ∈ S}. (3)

Note that D is a deterministic stationary policy set, so is Dλ. In
this paper, we do not consider randomized stationary policies.
The optimality of deterministic policies will be studied in the next
section, see Theorem 5. It is easy to see that the policy set Dλ may
be empty if the value of λ is not chosen properly. In this paper, we
assume thatDλ is not empty, which is similar to the assumption in
Markowitz’s mean–variance portfolio problem (Markowitz, 1952;
Zhou & Yin, 2003). For a given discounted performance vector λ,
Dλ may contain more than one policy. The objective is to find an
optimal policy fromDλ such that the variance of the Markov chain
is minimized. The mathematical formulation is written as below.

min
d∈Dλ

{
σ 2(d, i)

}
, for all i ∈ S. (4)

That is, we aim to find an optimal policy among all feasible policies
whose discounted performance is equal to a given constant vector
λ, such that the variance of discounted rewards is minimized. We
denote such amean–variance optimal policy as d∗λ. The existence of
the solution d∗λ to the problem (4) is not guaranteed because the
minimization in (4) is over every state i ∈ S , i.e., (4) can be viewed
as a multi-objective optimization problem. For a general multi-
objective optimization problem, it is possible that no solution can
dominate all the other solutions on the value of every dimension of
objective function. In thenext section,wewill discuss the existence
of such optimal policy d∗λ and develop an optimization algorithm to
find it. Moreover, we have the following remarks.
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