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a b s t r a c t

This paper studies the migration of double imaginary roots of the systems’ characteristic equation when
two parameters are subjected to small deviations. The proposed approach covers a wide range of models.
Under the least degeneracy assumptions, we found that the local stability crossing curve has a cusp at the
point that corresponds to the double root, and it divides the neighborhood of this point into an S-sector
and a G-sector. When the parameters move into the G-sector, one of the roots moves to the right half-
plane, and the othermoves to the left half-plane.When the parameters move into the S-sector, both roots
move either to the left half-plane or the right half-plane depending on the sign of a quantity that depends
on the characteristic function and its derivatives up to the third order.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Control systems often depend on parameters and we may gen-
erally write their characteristic equation as

q(s, p) = 0, (1)

where s is the Laplace variable and p ∈ Rn is a vector of n
parameters. We can have parameters due to internal dynamics.
For instance, modeling in physical, biological or social sciences
sometimes requires taking into account the time delays inherent in
the phenomena. Depending on the model complexity, but also on
howmuch information is known, wemay chose amodel with con-
tinuous constant delays, or a model with distributed delays (see
Cushing, 1977; MacDonald, 1989). For instance, in the case of a
time-delay system with two constant delays, the characteristic
equation can be written of the form

q1(s, τ1, τ2) = r0(s) + r1(s)e−τ1s + r2(s)e−τ2s, (2)

where rk(s), k = 0, 1, 2 are polynomials of s with real coefficients,
and the delays τ1, τ2 are the two parameters.
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Also common is the casewhen p contains controller parameters.
Classical examples include PI, PD and PID controllers. For example,
the continuous time PID controller is expressed in the Laplace
domain as q2(s) = KP

(
1 +

1
Tis

+ Tds
)
, where KP is the proportional

gain, Ti and Td are the integral and derivative time constants.
Furthermore, many process control problems also contain a time
delay τm (see Morarescu, Mendez-Barrios, Niculescu, & Gu, 2011;
O’Dwyer, 2006). These include proportional plus delay q3(s), inte-
grator plus delay model q4(s), first order lag plus delay q5(s), first
order lag plus integral plus delay q6(s) expressed below:

q3(s) = Km(1 + e−sτm ) q4(s) =
Kme−sτm

s

q5(s) =
Kme−sτm

1 + sTm
q6(s) =

Kme−sτm

s(1 + sTm)
.

If in the expression of q3(s) there are two different gains for the two
terms, then we obtain the proportional retarded controller: q7(s) =

Kp+Kre−sτm . Furthermore, Villafuerte,Mondié, andGarrido (2013)
showed that proportional retarded controller outperforms a PD
controller on an experimental DC-servomotor setup. Obviously,
any control among PID type results in a characteristic equation that
depends on the control parameters.

Many studies have been conducted on the stability of sys-
tems that depend on parameters. For example, for systems with
a single delay as the parameter, methods of identifying all the
stable delay intervals are given in Lee and Hsu (1969) and Wal-
ton and Marshall (1987). For system with two parameters, a
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rich collection of stability charts (the parameter regions show-
ing where the system is stable) for time-delay systems are pre-
sented in Stépán (1989). For systems with two delays as the
parameters, a geometric approach is introduced in Gu, Niculescu,
and Chen (2005). This analysis is based on the continuity of
the characteristic roots as functions of parameters, which needs
to be carefully evaluated in the case of time delay systems of
neutral type (see Gu, 2012; Michiels & Niculescu, 2014), and
consists of identifying the parameters that correspond to imagi-
nary characteristic roots and judging the direction of crossing of
these roots as parameters change. Such an analysis is known as
D-decomposition method (also known as D-subdivision method).
Such a method is first applied to time-delay systems in Neimark
(1948). Earlier examples for other systems have been documented
by the survey paper (Gryazina, Polyak, & Tremba, 2008). More
recent studies using D-decomposition methods can be found
in Gryazina and Polyak (2006) and Ruan and Wei (2003).
Challenges due to non-differentiability arise when the imagi-
nary roots are also multiple roots. Such problems have tradi-
tionally been solved using Puiseux series (Kato, 1980; Knopp,
1996), see, for example, Chen, Fu, Niculescu, and Guan (2010)
and Li, Niculescu, Çela, Wang, and Cai (2013) for systems with one
parameter.

In this paper, we study systems with two parameters, and
present a method to analyze the migration of roots in a neighbor-
hood of the parameters corresponding to a double imaginary char-
acteristic root. The method of analysis uses traditional complex
analysis, and does not require Puiseux series. A preliminary version
of this paper, which is restricted to the case of two point-wise
delays as the parameters, was presented in Gu, Irofti, Boussaada,
and Niculescu (2015). It should be pointed out that some phenom-
ena discussed in this work, such as cusp in the parameter space,
has also been presented in Levantovskii (1982). In this paper, we
extend and generalize this method to a wide range of systems,
as mentioned above, that can generally be written in the form of
characteristic equation (1). Additionally, we illustrate how to apply
the algebraic criterion by three examples.

2. Problem statement and prerequisites

Consider a system with the characteristic equation of the form
(1). For p0 = (p10, p20), we assume that the function q(s, p0) has a
double root on the imaginary axis, s = s0 = iω0. In other words,
we assume

q(s0, p0) =
∂q
∂s

⏐⏐⏐⏐ s=s0
p=p0

= 0. (3)

We further assume that s0 is not a third order root, i.e.

∂2q
∂s2

⏐⏐⏐⏐ s=s0
p=p0

̸= 0. (4)

Suppose q(s, p) is analytic with respect to s, and continuously
differentiable with respect to (s, p) up to the third order. We make
the following additional non-degeneracy assumption:

D = det

⎛⎜⎜⎝Re
(

∂q
∂p1

)
Re

(
∂q
∂p2

)
Im

(
∂q
∂p1

)
Im

(
∂q
∂p2

)
⎞⎟⎟⎠

s=s0
p1=p10
p2=p20

̸= 0, (5)

where Re(·) and Im(·) denote the real and imaginary part of a
complex number, respectively. Eqs. (3)–(5) will be the standing
assumptions in the remaining part of this paper. Assumption (5)

contains the first-order partial derivatives of q with respect to the
two parameters, p1 and p2.

Definition 1. For a system of the form (1) that satisfies (3), we say
it is ‘‘the least degenerate’’ if assumptions (4)–(5) hold.We also say
that inequalities (4) and (5) are the least degeneracy assumptions.

In view of the implicit function theorem, a consequence of
inequality (5), which is one of the non-degeneracy assumptions,
is that the characteristic equation (1) defines the pairs (p1 p2)
in a small neighborhood of the critical point p0 = (p10 p20)
as a function of s in a sufficiently small neighborhood of s0. In-
troduce the notation Nε(x0) = {x | |x − x0| < ε} and N ◦

ε (x0) =

{x | 0 < |x − x0| < ε} to denote the neighborhood of a point x0.
Then, the above remarks can be more precisely stated in the fol-
lowing proposition.

Proposition 2. There exists an ε > 0 and a sufficiently small
δ > 0 such that for all s ∈ Nδ(s0), we may define p1(s) and p2(s)
as the unique solution of (1) with (p1(s), p2(s)) ∈ Nε(p10, p20). The
functions so defined are differentiable up to the third order.

Note that, in general, for s ∈ Nδ(s0), characteristic equation
(1) may have other solutions outside of Nε(p10, p20). We recall the
stability crossing curves defined in Gu et al. (2005) as the set of
all points (p1, p2) ∈ R2

+
such that q(s) has at least one zero on the

imaginary axis. Therefore, the set

T(ω0,p10,p20) =

{(p1(iω), p2(iω)) ∈ Nε(p10, p20) | iω ∈ Nδ(iω0)} ,

which is a curve in the p1-p2 space that passes through the
point (p10, p20), is the restriction of stability crossing curves to
a neighborhood of (p10, p20). Thus, T(s0,p10,p20) will be known as
the local stability crossing curve. Roughly speaking, it is a curve
that divides the neighborhoodNε(p01, p02) of the parameter space
into regions, such that the number of characteristic roots on
the right half complex plane remains constant as the param-
eters vary within each such region. We also define the posi-
tive and negative local stability crossing curves, corresponding
to ω > ω0 and ω < ω0, respectively. For instance, we use
the notation T +

(ω0,p10,p20)
= {(p1(iω), p2(iω)) ∈ Nε(p10, p20) | iω ∈

Nδ(iω0), ω > ω0} for the positive local stability crossing curve.
We point out that the stability crossing curves are known as the
D-decomposition curves in Gryazina and Polyak (2006).

The purpose of this paper is to study how the two characteristic
rootsmigrate as (p1, p2) varies in a small neighborhood of (p10, p20)
under the least degeneracy assumptions.

2.1. Cusp and local bijection

We parametrize a neighborhood of s0 in the complex plane by
using a radial variable u and an angle θ : s = s0 + ueiθ . We also
denote γ = eiθ =

∂s
∂u .We can now fix the angular variable θ , i.e., fix

γ , and calculate the derivatives of p1 and p2 with respect to the
radial variable u. This can be easily achieved by differentiating (1),
yielding
∂q
∂p1

∂p1
∂u

+
∂q
∂p2

∂p2
∂u

+
∂q
∂s

γ = 0. (6)

If we set u = 0 and use the second equation of (3) in (6), we obtain⎛⎜⎜⎝Re
(

∂q
∂p1

)
Re

(
∂q
∂p2

)
Im

(
∂q
∂p1

)
Im

(
∂q
∂p2

)
⎞⎟⎟⎠

s=s0
p1=p10
p2=p20

⎛⎜⎝∂p1
∂u
∂p2
∂u

⎞⎟⎠
u=0

= 0,
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