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a b s t r a c t

In this paper, different approaches for economic MPC under disturbances are investigated with respect to
their optimal operating behavior. We derive dissipativity-based conditions under which certain optimal
operating regimes can be guaranteed for the considered setups. Depending on the information about the
disturbance, the system, and the algorithmic structure of the considered underlying robust economicMPC
scheme, different statements can be derived. These include, inter alia, statements on stochastic and robust
optimal operation. Moreover, we are able to provide converse statements showing – under a certain
controllability assumption – necessity of the dissipativity statements for optimal operation at steady-
state.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Economic Model Predictive Control (MPC) has been an active
field of research within the last decade. While in stabilizing MPC,
the stage cost function is chosen in order to stabilize an a priori
determined steady-state, in economic MPC arbitrary stage cost
functions can be handled. This allows to consider more general
control objectives, e.g., profit maximization or minimization of
energy consumption. In the nominal, undisturbed case, optimal
behavior of economic MPC algorithms has thoroughly been inves-
tigated. Due to the consideration of general stage cost functions
in economic MPC, the optimal operating behavior might not be
steady-state operation and also the closed-loop system does not
necessarily converge to the optimal steady-state. Thus, one key
question is: How can the optimal operating behavior be classified?
In Angeli, Amrit, and Rawlings (2012), a first definition of optimal
operation at steady-state is introduced for nominal economic MPC
and sufficient conditions for a system to satisfy this property
are presented (based on dissipativity). The converse statement is
investigated in Müller, Angeli, and Allgöwer (2015), where it is
shown that a certain controllability assumption is needed in order
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to prove necessity of dissipativity. A generalization of the above
results as well as an extension to periodic systems is provided in
Müller and Grüne (2016) and Zanon, Grüne, and Diehl (2016).

For most practical applications, the system is affected by dis-
turbances. Whenever disturbances are acting on a system, it turns
out that just transferring robust stabilizing MPC schemes to the
economic case can result in a very poor performance, since the
schemes do not account for the influence of the disturbance on the
performance (see, e.g., Bayer, Müller, & Allgöwer, 2014). In order to
overcome this drawback, several schemes have been presented ex-
plicitly accounting for the disturbance within the setup of theMPC
algorithm (see, e.g., Bayer, Lorenzen, Müller, & Allgöwer, 2016;
Bayer et al., 2014; Bayer, Müller, & Allgöwer, 2016; Broomhead,
Manzie, Shekhar, & Hield, 2015; Hovgaard, Larsen, & Jorgensen,
2011; Huang, Biegler, & Harinath, 2012; Lucia, Andersson, Brandt,
Diehl, & Engell, 2014; Marquez, Patiño, & Espinosa, 2014).

In this paper, we are interested in analyzing the optimal operat-
ing behavior in the context of economicMPCunder disturbances. In
the robust setting, only in Bayer et al. (2014) some first attempt to
examine the optimal operating behavior has been made, but only
for one particular setup and for a special structure of the optimiza-
tion problem. Here, we present a more comprehensive treatment
of the subject. The major difficulty when analyzing optimal opera-
tion at steady-state under disturbances lies in the different robust
economic MPC approaches available in literature. In particular,
these approaches differ in the way which information about the
disturbance is assumed to be known and how it is taken into
account. This necessitates different notions of optimal operation at
steady-state and, at the same time, different notions of dissipativity
for investigating these properties. We highlight the fundamental
contrast to the nominal case, where optimal operation at steady-
state is a property that is independent of the underlying MPC
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approach. The analysis is split in three parts, which differ de-
pending onwhich information about the disturbance is considered
and how the disturbance is accounted for. These three parts also
structure the paper: First, we investigate optimality depending
only on the dynamics, the cost function, and the constraints. The
disturbance is only considered through bounds on the worst case
disturbance. The resulting optimality notion can be interpreted as
steady-state operation being approximately optimal up to an error
term depending on the largest disturbance. This seems to be the
most general but also the weakest statement for optimality. Thus,
in a second step, we investigate optimality for robust economic
MPC schemes based on nominal dynamics underlying the optimal
control problem. Third, we extend the analysis to systems with
additional stochastic information on the disturbance. This addi-
tional information can be employed to sharpen the statement on
the optimal operating behavior.

Notation:We denote by I≥0 the set of all non-negative integers and
by I[a,b] the set of all integers in the interval [a, b] ⊂ R. For sets
X, Y ⊆ Rn, the Minkowski set addition is defined by X ⊕ Y :=

{x+ y ∈ Rn
: x ∈ X, y ∈ Y }. A continuous function α : R≥0 → R≥0

is a class K function if it is strictly increasing and α(0) = 0. It is a
classK∞ function if furthermoreα(s) → ∞ for s → ∞.We denote
k-step ahead predictions of state or input a, which are predicted at
time t , by a(k|t). When a prediction is marked by ∗, e.g., a∗(k|t),
this indicates that this state or input is the optimal k-step ahead
prediction at time t with respect to the considered MPC problem.
Given a set Y ⊆ X × U, we denote its projection on X by YX. The
Euclidean norm of a vector x ∈ Rn is denoted by |x|.

2. Problem setup

We are interested in controlling systems of the form

x(t + 1) = f
(
x(t), u(t), w(t)

)
, x(0) = x0, (1)

with f : Rn
× Rm

× Rq
→ Rn continuous, where x(t) ∈ X ⊆ Rn

is the system state, u(t) ∈ U ⊆ Rm is the input to the system, and
w(t) ∈ W ⊂ Rq is an external disturbance acting on the system.
We assume that the disturbance set W is convex, compact, and
contains the origin in its interior. Moreover, we assume constraints
on the states and inputs of the form(
x(t), u(t)

)
∈ Z, ∀t ∈ I≥0, (2)

whereZ ⊆ X×U is a compact and convex set containing the origin
in its interior.

Our goal is to characterize the optimal system behavior a priori,
given the dynamics, the constraints Z, and the general continuous
stage cost ℓ : Rn

×Rm
→ R. This can be done in different ways, de-

pending onwhich information on the disturbancesw is considered
and how this information is taken into account. When considering
economic stage cost functions, that is, stage cost functions where
the optimal behavior is not directly determined by design, it is a
relevant question to derive the optimal operating scheme. This is
not only of theoretical interest but can also be used in order to
investigate whether the closed-loop system ‘‘does the right thing’’,
i.e., whether the closed-loop system achieves the best attainable
performance. Thus, investigating optimal operating schemes and
closed-loop performance guarantees can be seen as two sides of
the same coin: while the former determines the best achievable
performance, the latter provides the guaranteed achieved closed-
loop performance. While the closed-loop performance bound is a
property of the underlying MPC algorithm, optimal operation (at
steady-state) is (in the nominal case) a property of the problem
setup only.Wewill see later that for the robust case, this character-
istic can be recovered, yet, to someextent the considered algorithm
plays part in the analysis.

In order to ensure computational tractability of the repeatedly
solved optimal control problem, in MPC for systems with distur-
bances one typically uses a feedback described by a given (fixed)
continuous parametrization u(t) = π (x(t), v(t)), with v(t) ∈ Rm

(see, e.g., Fontes & Magni, 2003; Limón et al., 2009). Using this
parametrization results in the system

x(t + 1) = f
(
x(t), π (x(t), v(t)), w(t)

)
=: fπ

(
x(t), v(t), w(t)

)
.

(3)

Before starting the discussion, we want to introduce some nota-
tion. With regard to the constraints and the input parametrization,
we introduce

Zπ :=
{
(x, v) ∈ Rn

× Rm
:
(
x, π (x, v)

)
∈ Z

}
. (4)

Here, Zπ need not be a subset of Z. By nominal system, we mean
the system

z(t + 1) = fπ (z(t), v(t), 0), z(0) = z0, (5)

where fπ is the same dynamics as in (3), and by z we denote the
nominal state. Note that while u(t) = π (x(t), v(t)) is the input to
the real system, π (z(t), v(t)) is the input to the nominal system
and v(t) is a free input variable. Given the nominal system, we can
introduce the error e(t) := x(t) − z(t). We want to determine an
invariant set for the resulting error system

e(t + 1) = fπ
(
x(t), v(t), w(t)

)
− fπ

(
z(t), v(t), 0

)
,

e(0) = x0 − z0.
(6)

Definition 1 (Bayer, Müller et al., 2016). A set Ω∞ ⊆ Rn is
robust control invariant (RCI) for the error system (6) if there
exists a feedback control law u(t) = π (x(t), v(t)) such that for all
x(t), z(t) ∈ Rn and v(t) ∈ Rm with e(t) := x(t) − z(t) ∈ Ω∞

and
(
x(t), π (x(t), v(t))

)
∈ Z, and for all w(t) ∈ W, it holds that

e(t + 1) ∈ Ω∞.

For any state x(t) of the real system satisfying x(t) ∈ {z(t)} ⊕

Ω∞, the subsequent state x(t + 1) lies for all possible disturbances
w(t) ∈ W within the set {z(t + 1)} ⊕ Ω∞. Thus, the set Ω∞ cen-
tered at the nominal trajectory provides an outer approximation
of all possible state trajectories of the real system. Moreover, by
controlling the nominal state, one can also control the real state
which is by Definition 1 guaranteed to lie in the RCI set centered
at the nominal state. In general, computing RCI sets for arbitrary
nonlinear systems is a difficult task, but there exist different meth-
ods to compute RCI sets for (special classes of) nonlinear systems,
see, e.g., Bayer, Bürger, and Allgöwer (2013), Limón, Alamo, and
Camacho (2002) and Yu, Maier, Chen, and Allgöwer (2013). In case
of linear dynamics in (3), i.e., x(t + 1) = Ax(t) + Bu(t) + w(t), and
with linear feedback of the form u(t) = Kx(t)+ v(t), computing an
RCI set boils down to computing a robust positively invariant (RPI)
set, see e.g. Blanchini (1999) and Kolmanovsky and Gilbert (1998).

In order to further simplify the notation, we introduce the cost
function

ℓπ

(
x(t), v(t)

)
:= ℓ

(
x(t), π (x(t), v(t))

)
.

Remark 1. Considering the input parametrization π , we note that
this is not needed in Section 3. However, to keep a consistent line
of presentation, the parametrization is used throughout the whole
paper.

2.1. Optimal operation in nominal economic MPC

Definition 2 (Angeli et al., 2012). System (5) is said to be optimally
operated at steady-statewith respect to the cost function ℓ and the
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