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a b s t r a c t

In this paper, we consider robust finite-time connectivity preserving coordination problems for second-
order multi-agent systems with limited sensing range. Based on integral sliding mode control and
artificial potential field, a distributed controller is developed to achieve robust finite-time consensus and
meanwhile maintain the connectivity of the communication network. The method is further extended
to address a finite-time formation tracking control problem. Numerical examples are given to show the
effectiveness of the proposed methods.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems have attracted much attention in the past
decade, as it has awide range of potential applications in both civil-
ian and military areas, such as sensor networks and multi-vehicle
formation (Dong & Hu, 2017; Dong, Sun, & Hu, 2016; Ren, Beard,
& Atkins, 2007). In practical applications, the agents usually have
limited sensing and communication capabilities and the connec-
tion graph for the multi-agent system is dependent on the sensing
range of the agent. Thus, the connectivity of the initial network
topology cannot be guaranteed for all future time,whichmotivates
the connectivity preservation problem (Dong &Huang, 2013; Feng,
Sun, &Hu, in press; Ji & Egerstedt, 2007; Kan, Klotz, Cheng, &Dixon,
2012; Su, Wang, & Chen, 2010). Connectivity preservation has a
wide application inmulti-robot flocking/rendezvous problems. For
example, in Ji and Egerstedt (2007), a distributed gradient method
was developed to maintain the initial network topology for a first-
order multi-robot system.

Most of the existing works did not specify the convergence
rate of the rendezvous algorithm. When considering the conver-
gence rate and robustness to external disturbances, finite-time
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control laws usually have better performance (Bhat & Bernstein,
2000). Finite-time consensus problems were investigated in Cao,
Ren, Casbeer, and Schumacher (2016), Cortés (2006), Guan, Sun,
Wang, and Li (2012), Hui (2011), Liu, Chen, Du, and Yang (2016),
Li, Du, and Lin (2011), Khoo, Xie, and Man (2009), Ou, Du, and
Li (2014), Wang and Hong (2008), Wang and Xiao (2010), Xiao,
Wang, Chen, and Gao (2009), Yu and Long (2015), Zhang, Yang,
and Zhao (2013) and Zhao, Duan, Wen, and Chen (2016). Cortés
(2006) presented nonsmooth tools to analyze finite-time stability
of continuous-time systems where the differential equations have
a discontinuous right-hand side, and then extended the results
to networked finite-time consensus. For second order systems,
Zhao et al. (2016) proposed a binary consensus protocol which
only requires sign information between neighbors. Considering
intrinsic nonlinear dynamics, some nonlinear consensus protocols
using odd functions were developed in Guan et al. (2012) and
Liu et al. (2016), and homogeneity theory is used to prove the
stability. The finite-time rendezvous problemwas first proposed in
Hui (2011). Cao, Ren, Casbeer, and Schumacher (2016) investigated
integrator-type dynamics with Lipschitz nonlinearities and Dong
(2016) considered disturbance rejection. It is noted that all these
works consider first-order leaderless multi-agent systems.

In this paper, we consider the finite-time connectivity preser-
vation problem for second-order leader-following multi-agent
systems with bounded nonlinearities and disturbances. We pro-
pose an integral sliding mode based framework to achieve ro-
bust finite-time consensus and formation tracking, andmeanwhile
maintain the connectivity of the communication network. The
main contributions of this paper can be summarized as follows:
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(1) Disturbance rejection, finite-time coordination and connec-
tivity preservation are simultaneously achieved. The disturbance
rejection adopts the integral sliding mode scheme (Utkin & Shi,
1996) in order to guarantee connectivity preservation, which also
deals with the nonzero acceleration of the leader. (2)We study the
finite-time connectivity preserving consensus tracking problem
for second-order systems, which are more complicated than first-
order leaderless systems addressed in the literature Hui (2011)
and Cao et al. (2016). The method is developed according to odd
function based consensus protocols for second order multi-agent
systems, where we design potential functions to achieve connec-
tivity preservation. One of the difficulties is to estimate the settling
time. In the existing literature such as Guan et al. (2012) and Liu
et al. (2016), homogeneity theory is used to prove the stability,
which leads to the difficulty in the settling time estimation. In this
paper, by properly selecting the Lyapunov function and potential
functions, the upper bound of the settling time can bewritten as an
expression of the initial conditions. (3) Inspired by the derived con-
sensus tracking controller, we propose a finite-time connectivity
preserving formation control approach based on a new potential
function. Compared with the existing studies on the finite-time
formation tracking problem (e.g., Liu, Zhao, & Chen, 2016; Ou et al.,
2014; Xiao et al., 2009), the proposedmethod is robust to bounded
disturbances and can preserve the network pattern.

2. Notation and preliminaries

Notations: In this paper, we use R and Rn to denote the set of
real numbers and n-dimensional real column vectors, respectively.
A⊗B denotes the Kronecker product ofmatrices A, B. Let ∥·∥ be the
2-norm and ∥·∥1 be the 1-norm. For a vector e = [e1, . . . , en]T ∈

Rn, sgn(e) = [sgn(e1), . . . , sgn(en)]T . Let sigα(e) = ∥e∥α (e/∥e∥), if
e ̸= 0, and sigα(e) = 0 if e = 0, which is continuous if α > 0. 1 and
0 are column vectors with appropriate dimensions.

Graph theory: Denote G = {V, E} an undirected graph, where
V = {1, . . . ,N} and E ⊂ V × V indicate the set of vertices and
edges, respectively. An edge is an ordered pair (i, j) ∈ E if agent
j can be directly supplied with information from agent i. Ni =

{j ∈ V |(j, i) ∈ E} denotes the neighborhood set of vertex i. Graph
G is connected if there is an undirected path between every pair of
distinct agents. A matrix A =

[
aij

]
∈ RN×N denotes the adjacency

matrix of G, where aij > 0 if and only if (j, i) ∈ E else aij = 0. In this
paper, we suppose aii = 0. Amatrix L ≜ D−A ∈ RN×N is called the
Laplacian matrix of G, where D = [dii] ∈ RN×N is a diagonal matrix

with dii =

N∑
j=1

aij.

Lemma 1. (1) (Wang & Xiao, 2010) Let δ1, . . . , δN ≥ 0 and 0 < p ≤

1, then (
N∑
i=1

δi)p ≤

N∑
i=1

δ
p
i ≤ N1−p(

N∑
i=1

δi)p. (2) Let δ1, . . . , δN ≥ 0 and

0 < p < q, then1 (
N∑
i=1

δ
q
i )

1
q ≤ (

N∑
i=1

δ
p
i )

1
p . (3) (Zuo, Yang, Tie, & Meng,

2014) Let δ1, . . . , δN ≥ 0 and p > 1, then
N∑
i=1

δ
p
i ≥ N1−p(

N∑
i=1

δi)p. (4)

(Young’s Inequality) Let δ1, δ2, c > 0 and p, q > 1. If 1
p +

1
q = 1,

then δ1δ2 ≤ cp δ
p
1
p + c−q δ

q
2
q .

1 This conclusion can be easily obtained by noting that (
N∑
i=1

δ
q
i )

p
q ≤

N∑
i=1

(δqi )
p
q .

3. Robust finite-time connectivity preserving consensus track-
ing

3.1. Problem formulation

Consider a second-order multi-agent system with N followers.
The dynamics of the follower i (i ∈ {1, . . . ,N}) are described by

ẋi(t) =vi(t),
v̇i(t) =ui(t) + fi(xi, vi, t) + di(t), (1)

where xi(t) ∈ Rn represents the position state of agent i, vi(t) ∈ Rn

represents the velocity state of agent i, ui(t) ∈ Rn represents the
control input, fi(xi, vi, t) ∈ Rn is an unknown nonlinear function
and di(t) ∈ Rn is the disturbance. Let x(t) = [xT1(t), . . . , x

T
N (t)]

T
∈

RNn be the position vector and v(t) = [vT
1 (t), . . . , v

T
N (t)]

T
∈ RNn be

the velocity vector.
The leader for system (1) has the following dynamics:

ẋ0(t) = v0(t), v̇0(t) = f0(x0, v0, t), (2)

where x0(t) ∈ Rn represents the position state, v0(t) ∈ Rn repre-
sents the velocity state, and f0(x0, v0, t) ∈ Rn is the acceleration
state.

In reality, the agent usually has a limited communication ca-
pability and can only communicate with agents within its infor-
mation range. If the relative distance of two neighboring agents
are larger than this range, the communication link may be lost.
Suppose that the initial connections are established according to
the distances, i.e., E(0) = {(i, j) :

xi(0) − xj(0)
 < R, i ∈

{0, 1, . . . , N} , j ∈ {1, . . . , N}}. The initial information exchange
among the N + 1 agents is represented by graph G(0) = {V, E(0)}
with V = {0, 1, . . . ,N} . Let GF (0) = {VF , EF (0)} be the subgraph
of the followers where VF = {1, . . . ,N} and EF (0) ⊂ E(0).

The adjacency matrix A = [aij] ∈ RN×N is defined as aij > 0
if

xi(t) − xj(t)
 < R and

xi(0) − xj(0)
 < R, and aij = 0

elsewise. The access of agents to the leader’s trajectory signal is
represented by a diagonal matrix B = [bi] ∈ RN×N where bi = 1 if
∥xi(t) − x0(t)∥ < R and ∥xi(0) − x0(0)∥ < R, and bi = 0 elsewise.
LetH = L+B be the information exchangematrix with L being the
Laplacian of GF .

The following assumptions will be used in the subsequent sta-
bility analysis.

Assumption 1. GF (0) is connected and at least one agent has access
to the leader’s information.

Assumption 2 (Zhao et al., 2016). ∥ fi(xi, vi, t)+di − f0(x0, v0, t)∥∞

≤ c, i ∈ {1, . . . ,N} , where c is a known constant.

Definition 1 (Robust Finite-time Connectivity Preserving Consensus
Tracking). Consider a multi-agent system composed of N fol-
lowers with dynamics (1) and a leader with dynamics (2). Each
agent can sense only up to a distance R from it. Suppose that
Assumptions 1–2 hold. The robust finite-time connectivity pre-
serving consensus tracking problem is solved if the system has the
following properties: (1) the connectivity of the initial graph G(0)
is preserved for all t ≥ 0; (2) xi(t) → x0(t) and vi(t) → v0(t) in a
finite time T , i ∈ {1, . . . ,N} .

3.2. Control design

Consider a distributed integral sliding mode control law with
the following form:

ui = unomi + udisconi, (3)
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