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a b s t r a c t

We consider a multi-player differential game, referred to as a reach-avoid game, in which one set of
attacking players attempts to reach a target while avoiding both obstacles and capture by a set of
defending players. Unlike pursuit–evasion games, in this reach-avoid game one set of players must not
only consider the other set of players, but also the target. This complexity makes finding solutions to such
games computationally challenging, especially as the number of players grows. We propose an approach
to solving such games in an open-loop sense, where the players commit to their control actions prior to
the beginning of the game. This reduces the dimensionality of the required computations, thus enabling
efficient computation of feasible solutions in real time for domains with arbitrary obstacle topologies. We
describe two such formulations, each of which is conservative towards one side, and derive numerical
algorithms based upon modified fast-marching methods (FMM) for computing their solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In a reach-avoid game, one set of players (attackers) attempts
to arrive at a target set in the state-space, while avoiding a set of
unsafe states, as well as interceptions by an opposing set of players
(defenders). Such problems encompass a large number of robotics
and control applications. For example, many safe motion-planning
problems (see Karaman and Frazzoli, 2011b and the references
therein) may be formulated as reach-avoid games, in which the
objective is to control one or more agents into a desired target
region, while avoiding a set of obstacles or possibly adversarial
agents. Reach-avoid games considered here belong to the general
class of differential games (Friedman, 1971; Isaacs, 1967), which
include a variety of interesting problems (e.g. pursuit–evasion
games Flynn, 1974, Lewin, 1986, network consensus problems
under adversarial attacks Khanafer, Touri, & Basar, 2012, 2013,
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motion planning Chen, Zhou, & Tomlin, 2014, 2017; Karaman
& Frazzoli, 2011a) and have been a subject of significant past
research. For reach-avoid related games, the approaches that have
been proposed often feature trade-offs between optimality of the
solution (with respect to the time to achieve a player’s objective),
and the complexity of the computation.

Our approach in this paper to reach-avoid games is to formulate
them as an open-loop game, andmore specifically, as a framework
of open-loop games that includes the open-loop upper value game
and open-loop lower values game. The open-loop games for the
reach-avoid problem formulated here are an instantiation of a
general Stackelberg game (Başar & Olsder, 1999), an important
class of games for modeling strategic behavior in dynamic games.
In an open-loop game, the granularity of a strategy at which a
player chooses is a control function that maps the entire time
horizon to a trajectory. Depending on which player(s) choose(s)
first, andwhich one(s) choose(s) in response, they are leader(s) and
follower(s) respectively.

The open-loop games are conservative towards one side of
players: the side that chooses first. Consequently, this level of con-
servatismoffers performance guarantees of the solution. Namely, if
a solution exists, the player is guaranteed to achieve the desired ob-
jective, irrespective of the actions of the opponent, without need-
ing to incorporate any future state information. This is particularly
well-suited for certain safety-critical applications, where state up-
date is hard or costly to obtain, for example in GPS-denied en-
vironments. Another safety-critical application is robotic surgery,
where the robotic system needs to navigate inside human body to
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eliminate certain tissues while ensuring that no invasive damage
is induced. Those safety-critical applications tend to demand the
solution to satisfy strong performance guarantees (e.g. achieving
the goal regardless of what the disturbance does, adversarial or
non-adversarial alike), a property guaranteed by the open-loop
framework.

In a static Stackelberg game (only one-round of interaction be-
tween players), an exhaust tree search can be used to find the opti-
mal action (Başar & Olsder, 1999). However, at least in the context
of reach-avoid open-loop dynamic games, no efficient algorithms
have been devised to produce the optimal controls. Consequently,
this paper is particularly focused upon the study of efficient and
scalable computational algorithms for solving open-loop reach-
avoid games. We emphasize that the proposed approach does not
involve solving anyHamilton–Jacobi–Isaacs (HJI) equations1 in the
high dimensional space of all player states. Instead, as discussed
in detail later, we reduce the problem to solving Hamilton–Jacobi–
Bellman (HJB) equations in the lowdimensional space of individual
player states.

1.1. Related work

For certain games, it is possible to construct strategies (some-
times even optimal) for the players analytically or geometrically.
Defending a line segment on a plane without obstacles has been
considered in Kawecki, Kraska, Majcherek, and Zola (2009) and
Rzymowski (2009), where the motion has been restricted to fixed
maximum speed and moving along line segments, respectively. In
both cases, optimal strategies have been found for defending the
target set (a line segment). A class of methods has been proposed
for safe motion-planning in the presence of moving obstacles by
computing the future set of states an obstacle may occupy, given
the dynamics of the controlled agent and the obstacles. This set of
states are then treated as obstacles in the joint state-time space,
and paths are planned which avoid these states (Fiorini & Shiller,
1998; Fraichard & Asama, 2004; Van Den Berg & Overmars, 2008).
They are well suited for scenarios in which the obstacle motion
can be unpredictable or even adversarial, so that in the presence of
hard constraints on safety, one needs to account for the worst-case
possibility that the disturbances may actively attempt to collide
with the agent. However, these approaches tend to be limited
to simple game configurations without complex static obstacle
configurations or inhomogeneous speed constraints from varying
terrain, issues that our formulation (Section 2.1) captures and that
our computational framework (Section 4) addresses.

For general cases, the classical approach is to formulate the
game as a minimax problem, in which a value function is de-
fined representing the time-to-reach of the attackers at the target,
subject to the constraint that it is not captured by the defender.
This value is then computed via a related Hamilton–Jacobi–Isaacs
(HJI) partial differential equation (PDE),with appropriate boundary
conditions (Başar &Olsder, 1999; Evans& Souganidis, 1984; Isaacs,
1967). Solutions are typically found either using the method of
characteristics (Başar & Olsder, 1999; Isaacs, 1967), where optimal
trajectories are computed by integrating backward from a known
terminal condition, or via numerical approximation of the HJI
equation on grids (Falcone & Ferretti, 2002). For the HJI method,
the number of grid points needed to approximate the value func-
tion typically grow exponentially in the number of continuous
states. As such, finding solution strategies for such games can
be computationally expensive, even for games involving a single
attacker and a single defender. For differential games with mul-
tiple players, the computational burden also scale exponentially

1 This corresponds to a closed-loop formulation. See Section 1.1 for a discussion
and related work.

in the number of players. On a related note, in particular differ-
ential game scenarios, approximate dynamic programming (ADP)
techniques have been developed to efficiently compute game so-
lutions. For example, clever policy iterations have been designed
to solve certain two-player zero-sum games (Johnson, Bhasin, &
Dixon, 2011; Vamvoudakis & Lewis, 2012). However, the differ-
ential game scenario considered in this paper has a non-smooth
value function. The application of ADP methods to such scenarios
has been found to be challenging from a numerical convergence
standpoint (Munos, Baird, & Moore, 1999). In closing, we mention
that another related research thread concerns reach-avoid games
under imperfect or incomplete information (Doyen & Raskin,
2010; Sebbane, 2014), where the players do not necessarily know
the locations of the other players at all times.

As a final note, closely related to reach-avoid problems is the
class of pursuit–evasion problems (Flynn, 1974; Lewin, 1986; Liu,
Zhou, Tomlin, & Hedrick, 2013; Zhou et al., 2016). A reach-avoid
game shares some similar aspects of a pursuit–evasion game: the
attacker (similar to an evader) needs to avoid the capture of the
defender (similar to a pursuer) because capture would result in
the attackers losing the game instantly. However, there is a key
distinction between the two: the utility of an agent in a reach-avoid
game is fundamentally different from that of a pursuit–evasion
game. In the latter, an evader’s utility is solely based on whether it
will ever be captured, whereas in the former, the attacker’s utility
depends on how long it takes to reach the target. Consequently,
a reach-avoid problem is much more challenging because the
attacker not only needs to avoid capture, but also needs to reach
a per-determined target set. The recent work (Zhou et al., 2016)
studies a multi-pursuer–single-evader pursuit–evasion problem,
where an analytical cooperative pursuit strategy for the pursuers
is derived using Voronoi partitions. This geometric approach (and
the analytical results therein) are feasible because all agents in
the pursuit–evasion problem are assumed to have constant speed.
Conversely, in our current reach-avoid setting, in addition to the
complexity just mentioned, we also allow for arbitrary speed pro-
files for all agents. As a result, these two levels of generality dictate
that a completely different and non-analytical approach be taken.

1.2. Our contributions

In this paper, we provide a computationally tractable frame-
work for solving open-loop reach-avoid games. Our major con-
tribution is the algorithmic framework for computing open-loop
values. Specifically, we develop (Section 4) efficient and novel
numerical algorithms (a set of modified fast-marching methods)
that allow us to quickly compute solutions to these open-loop
games, in the form of a set of open-loop player trajectories with
provable properties. To the best of our knowledge, this is the first
set of efficient algorithms for computing open-loop values. We
note that the two open-loop values, in addition to being interesting
for study in their own right, also provide bounds on the closed-loop
value (in general the solution to an HJI equation, which is typically
intractable to solve) of the reach-avoid game. In this sense, our
open-loop framework can be interpreted as a computationally
efficient approximation of the closed-loop value for reach-avoid
games, through the trade-off of a certain degree of optimality for a
reduction in computational complexity. In particular, there exist
non-trivial cases where solving for open-loop values also yield
closed-loop values. We also emphasize the independent modeling
value of the open-loop formulations: since they are conservative
towards one set of players, the resulting solutions provide worst-
case guarantees that will be useful in safety-critical applications.
Some of the theoretical results were presented in two previous
publications (Takei, Huang, Ding, & Tomlin, 2012; Zhou, Takei,
Huang, & Tomlin, 2012). This work unifies the presentation of the
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