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a b s t r a c t

A probabilistic framework is proposed for the optimization of efficient switched control strategies for
physical systems dominated by stochastic excitation. In this framework, the equation for the state trajec-
tory is replaced with an equivalent equation for its probability distribution function in the constrained
optimization setting. This allows for a large class of control rules to be considered, including hysteresis
and a mix of continuous and discrete random variables. The problem of steering atmospheric balloons
within a stratified flowfield is a motivating application; the same approach can be extended to a variety
of mixed-variable stochastic systems and to new classes of control rules.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control theory is concerned with minimizing the en-
ergy required to maintain a feasible phase-space trajectory within
a fixed time-average measure from a target trajectory (Lewis &
Syrmos, 1995). This may be achieved by solving the constrained
optimization problem (Nocedal & Wright, 2006)

min
u

|u|Q (1a)

with
{
|x − x̄|R = constant
ẋ = f (x, u) + ξ,

(1b)

where u(x) is a given feedback control rule, x = x(t) and x̄ = x̄(t)
are the actual and target trajectories in phase space, and the addi-
tive noise term ξ models the unknown or uncertain components
of the dynamical system. The norms |·|Q and |·|R must be chosen
to reflect the actual control energy and the specific measure of
interest of the system state, but are often limited to L2 or L∞ norms
to make the optimization problem tractable. The present work is
motivated by the general inability of the formulation (1) to treat
problems with mixed continuous and discrete random variables,
hysteretic behavior, and/or norms others than L2 or L∞.
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Basin under the direction of Editor André L. Tits.
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As amotivating application, consider a balloon in a stably strati-
fied turbulent flowfieldwhose time-averaged velocity is a function
of height only, as depicted by thin arrows in Fig. 1a. This is a good
approximation for the radial flowwithin a hurricane, as depicted in
Fig. 1b. The balloon’s density can be changed to control its vertical
velocity (and, hence, its altitude), and the balloon’s motion can be
well approximated as the motion of a massless particle carried by
the flowfield

Ẋ = αZ + ξ, (2a)

Ż = u(X, Z), (2b)

where X and Z are random variables denoting the horizontal and
vertical positions, α is the vertical gradient of the time-averaged
horizontal velocity (i.e.,αz is the time-averaged horizontal velocity
at height z), and the turbulent fluctuations of the horizontal ve-
locities are characterized by a white Gaussian noise ξ with zero
mean and spectral density c2. Neglecting the vertical velocity fluc-
tuations, the balloon moves in the horizontal direction according
to a Brownian motion with a probability distribution function
(PDF) pX,Z (x, z) with horizontal mean µX (t) = αzt and variance
σ 2
X (t) = c2t . In the uncontrolled case, the variance of the balloon’s

horizontal position grows linearly with time. The vertical velocity
u can then be used, leveraging the background flow stratification
α, to return the balloon to its original position.

We are thus interested in designing a control strategy u(x, z)
to limit the variance of the horizontal position of the balloon to
a target value σ̄ 2

X , while minimizing the control cost |u(x, z)|Q .
More specifically, we consider a three-level control (TLC) feedback
rule, depicted by thick lines in Fig. 1a, consisting of step-changes
of altitude ±h in the vertical position applied when the balloon

https://doi.org/10.1016/j.automatica.2017.11.001
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2017.11.001
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:mgl@mit.edu
mailto:luchini@unisa.it
mailto:bewley@ucsd.edu
https://doi.org/10.1016/j.automatica.2017.11.001


Please cite this article in press as: Meneghello, G., et al., A probabilistic framework for the control of systems with discrete states and stochastic excitation. Automatica
(2017), https://doi.org/10.1016/j.automatica.2017.11.001.

2 G. Meneghello et al. / Automatica ( ) –

Fig. 1. Left: flowfield model (thin arrows) and the three-level control (TLC) rule (thick lines). Right: radial velocity profiles, composite from dropsonde measurements
between 1996 and 2012 within 200 km of the hurricane center (Wang, Young, Hock, Lauritsen, Behringer, Black, et al. 2015), binned into 50m altitude intervals and sorted
according to hurricane category (1 to 5). The jaggedness of the profiles above 2 km altitude is due to the reduced number of available measurements with respect to the
lower region. Dashed lines estimate the mean velocity gradient α.

reaches a distance of ∓d from the target trajectory x = 0. In
such a setting, the vertical coordinate Z̄ ∈ {−h, 0, h} is essentially
discrete, as the controlledmovements of the balloon in the vertical
direction are assumed to happen relatively quickly. The control u is
then described by a sequence of δ functions, and exhibits hysteresis
in the horizontal coordinate. We additionally chose the L1 norm
|u|1, measuring the step size h, to measure the control cost |u|Q .
The L1 norm is a better representation of the energy required by
the balloon to change altitude than the classical L2 norm. More
importantly, the L1 norm of a control described by δ functions is
finite, while its L2 norm is unbounded and could never be optimal.

Despite the apparent simplicity of the TLC control rule, it cannot
be optimized as formulated in (1). Rather than constraining the
problem by the state-space representation of the system (2), as is
done in (1), we thus instead use an equivalent condition on the PDF
pX,Z (x, z), and restate the optimization problem (1) as

min
u

E [ |u|1 ] (3a)

with

⎧⎪⎨⎪⎩
E

[(
X − X̄

)2]
= σ̄ 2

X

∂tpX + f (X, u) · ∇pX +
c2

2
∇

2pX = 0,
(3b)

where we have replaced the state equation in (1b) with an equiv-
alent Fokker–Plank equation for the PDF pX (x) (Risken, 1984), and
the norms are interpreted as expected values. The solution of the
optimization problem as stated in (3) is the principal contribution
of this work.

Previous attempts, e.g. (Annunziato & Borzì, 2010, 2013; Fleig &
Guglielmi, 2016a, b), start from the same optimization problem (3),
but constrain the shape of the entire probability distribution pX in
place of its variance E

[
(X − X̄)2

]
. It is important to remark that the

optimization problem (3) is the starting point for the LQR solution
too (or any optimal control problem): rather than constraining the
entire PDF, we are here solving the equivalent of the LQR problem
for a non quadratic objective function and a non-linear control rule.

The remainder of this paper is concerned with the solution of
the optimization problem (3) for the TLC rule of Fig. 1a, and with
comparison to the classical linear control rule u = k1x+k2z, whose
optimal solution is given by the Linear Quadratic Regulator (LQR)
(Lewis & Syrmos, 1995). To facilitate comparison, we first derive
the functional form of the solution by dimensional analysis.

A preliminary version of this work appeared in Meneghello,
Luchini, and Bewley (2016).

2. Dimensional analysis

The control problem is governed by three parameters: the ve-
locity gradient α, the spectral density c2 of the noise ξ , and the
target horizontal variance σ̄ 2

X . Take the length, time, and velocity
scales as L =

√
c2/α, T = α−1, and U = L/T =

√
c2α. A single

dimensionless parameter can be defined as

R = σ̄ 2
X α/c2, (4)

and the dimensionless control cost can be written as w/U =

E [ |u|1 ] /U = F(R) where F(R) is an unknown dimensionless
function. Similar expressions can be written for d/L and h/L.

The system (2) is additionally invariant with respect to a rescal-
ing of the vertical coordinate by the time scale α−1. A rescaled
vertical coordinate Z̃ = αZ and control variable ũ = αu can
then by defined, and the parameters governing the problem are
reduced to the variance σ̄ 2

X and the spectral density c2 only. A
single dimensionless group w̃σ̄X/c2 = γw can be obtained, where
w̃ = αw is the rescaled control cost and γw is a dimensionless
constant to be determined. By making w̃ explicit and recasting the
dimensionless group in original coordinates the control cost can be
written as
w

U
= γw

1
U

c4

ασ̄ 3
X

= γw R−
3
2 . (5)

The same approach can be used to obtain expressions for d and
h:
d
L

= γd
σ̄X

L
= γdR

1
2 ,

h
L

= γh
1
L

c2

ασ̄X
= γhR−

1
2 . (6)

The solution is then obtained by optimizing the dimensionless
constants γ(·) for each control parameter. Similarly, for the linear
feedback control rule u = k1x + k2z, we can write Tk1 = γk1R

−2

and Tk2 = γk2R
−1. Note that the solution (5) is independent of the

specific choice of the control rule u(x, z); a comparison between
different rules can be obtained by comparing the respective values
of γw .

3. Three-level control (TLC) rule

We now proceed in seeking the optimal values for the parame-
ters d and h [equivalently, γd and γh in (6)] in the TLC rule indicated
by thick lines in Fig. 1a, corresponding to step changes in altitude
h at x = 0, ±d. In this limit, the governing equations (2) can be
restated as

Ẋ = −αZ̄ + ξ, (7)



Download English Version:

https://daneshyari.com/en/article/7109124

Download Persian Version:

https://daneshyari.com/article/7109124

Daneshyari.com

https://daneshyari.com/en/article/7109124
https://daneshyari.com/article/7109124
https://daneshyari.com

