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a b s t r a c t

In this paper, we study state-feedback control of Markov jump linear systems with partial information
about the mode signal responsible for switching between dynamic modes. We assume that the controller
can only access random samples of the mode signal according to a hidden-Markov observation process.
Our formulation provides a novel framework to analyze and design feedback control laws for various
Markov jump linear systems previously studied in the literature, such as the cases of (i) clustered
observations, (ii) detector-based observations, and (iii) periodic observations. We present a procedure to
transform the closed-loop system with hidden-Markov observations into a standard Markov jump linear
system while preserving stability, H2 norm, and H∞ norm. Furthermore, based on this transformation,
we propose a set of Linear Matrix Inequalities (LMI) to design feedback control laws for stabilization,
H2 suboptimal control, and H∞ suboptimal control of discrete-time Markov jump linear systems under
hidden-Markov observations of the mode signals. We conclude by illustrating our results with some
numerical examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Markov jump linear systems (Costa, Fragoso, & Marques,
2005) are an important class of switched systems in which the
mode signal, responsible for controlling the switch among dynamic
modes, is modeled by a time-homogeneous Markov chain. This
class of systems has been widely used in multiple areas, such as
robotics (Siqueira & Terra, 2004), economics (Blair & Sworder,
1975), and networked control (Hespanha, Naghshtabrizi, & Xu,
2007). Solutions to standard controller synthesis problems for
Markov jump linear systems, such as stabilization, quadratic opti-
mal control, H2 optimal control, and H∞ optimal control (see, e.g.,
Costa et al., 2005), can be found in the literature. These works are
based on the assumption that the controller has full knowledge
about the mode signal at any time instant. However, this assump-
tion is not realistic in many practical scenarios.
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To overcome this issue, several papers have investigated the
effect of limited and/or uncertain knowledge about the mode sig-
nal. For example, do Val, Geromel, and Gonçalves (2002) studied
H2 suboptimal control of discrete-time Markov jump linear sys-
tems when the state space of the mode signal is partitioned into
subsets, called clusters, and the controller only knows in which
cluster the mode signal is at a given time. Similar studies in the
context of H∞ suboptimal control can be found in Fioravanti,
Gonçalves, and Geromel (2014) and Gonçalves, Fioravanti, and
Geromel (2012). Vargas, Costa, and do Val (2013) investigated
quadratic optimal control problems in the extreme case of hav-
ing a single mode cluster (i.e., when the mode signal cannot be
observed). Many of the above works can be analyzed in a frame-
work recently proposed by Costa, Fragoso, and Todorov (2015) in
the context of H2 suboptimal control, as long as the mode signal
can be observed at any time instant. In a complementary line of
work, we find some papers assuming that the mode signal can
only be observed at particular sampling times, instead of at any
time instant. In this direction, Cetinkaya and Hayakawa (2015)
designed almost-surely stabilizing state-feedback gains when the
sampling times follow a renewal process. Similarly, Cetinkaya and
Hayakawa (2014) derived stabilizing state-feedback gains using
Lyapunov-like functions under periodic observations.

In this paper, we propose a novel framework to analyze and
design state-feedback control laws for discrete-time Markov jump
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linear systems when the observations of the mode signal by the
controller are both clustered and randomized over time. Specifi-
cally, we assume that the random samples of the mode signal are
obtained when, and only when, the mode signal takes particular
values. The proposed observation process, called hidden-Markov –
due to its similitude with hidden-Markov chains (Ephraim &
Merhav, 2002) – recovers many relevant cases previously studied
in the literature, such as those in Cetinkaya and Hayakawa (2014,
2015), Costa et al. (2015), do Val et al. (2002) and Gonçalves et al.
(2012). It is important to remark that, since the observation process
is hidden-Markovian, existing methods for analysis and control of
Markov jump linear systems, such as those in Costa et al. (2005),
do Val et al. (2002) and Gonçalves et al. (2012), do not apply to this
case.

One of the main purposes of this paper is to show that, despite
the generality of hidden-Markov observation processes, the re-
sulting closed-loop system can be equivalently transformed into a
(standard)Markov jump linear systemwhile preserving important
closed-loop properties, including mean-square stability, H2 norm,
and H∞ norm. Furthermore, based on this transformation, we
propose a set of Linear Matrix Inequalities (LMI) to design feed-
back control laws for stabilization, H2 suboptimal control, and H∞

suboptimal control of discrete-time Markov jump linear systems
under hidden-Markov observations of the mode signal.

The paper is organized as follows. In Section 2, we formulate the
state-feedback control problem for Markov jump linear systems
with hidden-Markov observations of the mode signal. We show in
Section 3 that the resulting closed-loop system can be transformed
into a standard Markov jump linear system by embedding the
(possibly non-Markovian) stochastic processes responsible for the
random observation process into a standard Markov chain. Based
on this transformation, in Section 4,we present an LMI formulation
to design state-feedback gains for stabilization, H2 suboptimal
control, and H∞ suboptimal control. We conclude by illustrating
the obtained results by numerical simulations in Section 5.

The notation used in this paper is standard. Let Z and N denote
the set of integers and nonnegative integers, respectively. The
number of the elements of a finite set X is denoted by |X |. Let Rn

and Rn×m denote the spaces of real n-vectors and n × m matrices,
respectively. By ∥ · ∥, we denote the Euclidean norm on Rn. Pr(·)
is used to denote the probability of an event. The probability of an
event conditional on another event A is denoted by Pr(· | A). Ex-
pectations are denoted by E[·]. The identitymatrix with dimension
d is denoted by Id. Let A be a real matrix. Define He(A) = A + A⊤.
When A is positive definite, we write A > 0. The symbol ⋆ is used
to denote the symmetric blocks of partitioned symmetricmatrices.
Finally, indicator functions are denoted by 1(·).

2. Problem formulation

In this section, we formulate the problems under study. Let
r = {r(k)}∞k=0 be a time-homogeneous Markov chain taking values
in a finite setΘ with transition probabilities Pr(r(k+1) = θ ′

|r(k) =

θ ) = pθθ ′ for θ, θ ′
∈ Θ . Let n, m, q, and ℓ be positive integers and,

for each θ ∈ Θ , let Aθ ∈ Rn×n, Bθ ∈ Rn×m, Cθ ∈ Rℓ×n, Dθ ∈ Rℓ×m,
and Eθ ∈ Rn×q. Consider the Markov jump linear system Σ given
as
x(k + 1) = Ar(k)x(k) + Br(k)u(k) + Er(k)w(k),

z(k) = Cr(k)x(k) + Dr(k)u(k).
(1)

We call x and r the state and the mode of Σ , respectively. The
signal w represents an exogenous disturbance, u is the control
input, and z is the controlled output. The initial conditions are
denoted by x(0) = x0 and r(0) = r0. We will assume that x0 and r0
are either deterministic constants or random variables, depending
on the particular control problem considered.

2.1. Hidden-Markov mode observation

In this paper, we consider the situation where the controller
cannotmeasure themode signal at every time instant. To study this
case, we model the times at which the controller can observe the
mode by a stochastic process t = {ti}∞i=0 taking values in N ∪ {∞}.
We call t the observation process and each ti an observation time. For
each i, we assume either ti < ti+1 or ti = ti+1 = ∞. It is understood
that, if ti < ti+1 = ∞, then no observation will be performed after
time ti. In this paper, we focus on the following class of observation
processes:

Definition 1. We say that an observation process t is hidden-
Markovian if there exists a subsetΘo ⊂ Θ such that t0 = min{k ≥

0 : r(k) ∈ Θo} and, for every i ≥ 0, ti+1 = min{k > ti : r(k) ∈ Θo},
where the minimum of the empty set is understood to be ∞.

We can interpret Θo as the set of modes that are observable
from the controller. In the extreme case of Θo = Θ , the mode
is observed at every time instant. Although Definition 1 requires
the observation process to be correlated with the dynamics of
the plant, in practice, it is possible to use an observation process
independent of the plant, as illustrated in the following example:

Example 2. Consider a Markov jump linear systemΣP given by

x(k + 1) = AP,rP (k)x(k)+BP,rP (k)u(k)+EP,rP (k)w(k),
z(k) = CP,rP (k)x(k)+DP,rP (k)u(k), (2)

for a Markov chain rP having a finite state spaceΘP and appropri-
ately defined coefficient matrices AP,θP , . . ., and EP,θP for θP ∈ ΘP .
Let us consider the situation where the observation process t is
defined independently of the given system. Specifically, assume
the existence of another Markov chain rK , defined over a finite
set ΘK and independent of rP , and a subset ΘK ,o ⊂ ΘK such
that t0 = min{k ≥ 0 : rK (k) ∈ ΘK ,o} and, for every i ≥ 0,
ti+1 = min{k > ti : rK (k) ∈ ΘK ,o}. We can show that this
observation process, which we call an independent hidden-Markov
observation process, can be regarded as specifying a hidden-Markov
observation process in the sense of Definition 1, as we see below.
For all θP ∈ ΘP and θK ∈ ΘK , define A(θP ,θK ) = AP,θP , B(θP ,θK ) = BP,θP ,
. . ., and E(θP ,θK ) = EP,θP . Let us also introduce the extended Markov
chain r = (rP , rK ) taking values inΘ = ΘP ×ΘK . We can then see
thatΣP is equivalent to theMarkov jump linear systemΣ (given in
(1)). Also, we can confirm that the above observation process can
be realized as the observation process in the sense of Definition 1 if
we setΘo = ΘP ×ΘK ,o ⊂ Θ . As we see in Section 5, the flexibility
of being able to design observation processes that are independent
of the plant to be controlled allows us to recover interesting cases
in the literature.

Apart from the random uncertainties in the observation times
described above, we also consider the situation in which the con-
trollermay only observe partial information about themode signal.
Specifically, we assume that the set Θo of observable modes is
divided into nonempty subsets C1, . . ., CN called clusters (do Val et
al., 2002), and that the controller can only observe to which cluster
the mode signal belongs at each observation time. In the partic-
ular situation where Θo equals the entire space Θ , the proposed
observation process reduces to the case studied in do Val et al.
(2002) and Gonçalves et al. (2012). Throughout the paper, we let
π : Θo → {1, . . . ,N} be defined by

π (θ ) = k, if θ ∈ Ck, (3)

which denotes themapping of a mode into the integer index of the
cluster the mode belongs to.

The combination of a hidden-Markov observation process and
clustered observations enables us to realize the detector-based
observations studied by Costa et al. (2015):
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