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a b s t r a c t

In large directed complex networks, it may result unfeasible to successfully pinning control the whole
network. Indeed, when the pinner node can be connected only to a limited number of nodes, it may be
impossible to guarantee pinning controllability of all the network nodes. In this paper, we introduce the
partial pinning control problem, which consists in determining the optimal selection of the nodes to be
pinned so as tomaximize the fraction of nodes of thewhole network that can be asymptotically controlled
to the pinner’s trajectory. A suboptimal solution to this problem is provided for a class of nonlinear node
dynamics, together with the bounds on the minimum coupling and control gains required to ‘‘partially
control’’ the network. The theoretical analysis is translated into an integer linear program (ILP), which is
solved on a testbed network of 688 nodes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An increasing number of complex control systems in applica-
tions can be modeled as networks of nonlinear dynamical agents
(the nodes), communicating with the others via a communication
protocol defined on the network edges. Researchers in different
areas of applied science and engineering have been addressing the
problem of selecting the network topology and the communica-
tion protocols among agents in order for the complex network
to perform a desired function. Examples include rendezvous and
flocking problems in robotics (Cortes, Martinez, & Bullo, 2006; Han
& Ge, 2015; Tanner, Jadbabaie, & Pappas, 2007), synchronization
of sensor networks (An et al., 2011), consensus and multi-agent
coordination problems in control theory (DeLellis, di Bernardo,
Gorochowski, & Russo, 2010; Li, Wen, Duan, & Ren, 2015), and the
emergence of coordinated motion in biological settings (Ghosh,
Rangarajan, & Sinha, 2010; Paley, Leonard, Sepulchre, Grunbaum,
& Parrish, 2007).

Substantial attention has been devoted on synchronization (Be-
lykh, Belykh, & Hasler, 2006; Gao, Meng, Chen, & Lam, 2010; Liu &
Chen, 2015; Pecora & Caroll, 1990) and consensus of complex net-
works (DeLellis, diBernardo, Garofalo, & Liuzza, 2010; Li, Chen, Su,
& Li, 2016). The idea is to find strategies to regulate the behavior of
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large ensembles of interacting agents that ensure all systems in the
network evolve towards the same asymptotic trajectory (Vishnam-
pet, 1993). At first, diffusively coupled identical nonlinear systems
were considered: given the node dynamics, the problem becomes
that of determining the range of the values of the coupling gains for
which the network synchronizes. This synchronizability problemhas
been solvedmainly by using the so-calledMaster Stability Function
approach (Pecora & Caroll, 1998), contraction theory (Lohmiller &
Slotine, 1998; Russo & di Bernardo, 2009), and passivity tools (Gao,
Chen, & Chai, 2007).

Although analytical conditions for synchronizing all nodes to-
wards an asymptotic solution were obtained, a major problem still
remains from a control viewpoint. Indeed, such common solution,
if it exists, cannot be arbitrarily imposed. A possible strategy to
achieve this goal would be to directly add some feedback control
input on each of the systems in the network so to steer the dy-
namics of each agent towards the desired trajectory. In practice,
when more than a handful of agents are considered, this approach
is not viable. A feasible alternative is represented by Pinning Control
(Huang & Manton, 2009; Li, Sun, Small, & Fu, 2015; Wang & Chen,
2002), where the control action is exerted through an additional
node, the pinner, which is directly connected only to a subset of
the network nodes, the pinned nodes. In this scenario, the problem
consists not only in designing the strength and form of the control
action to be exerted by the pinner, but also in determining how
many, and which pinned nodes need to be selected to achieve
the control objective (Porfiri & di Bernardo, 2008; Sorrentino,
di Bernardo, Garofalo, & Chen, 2007). In the recent literature, an
optimal location of the pinned nodes is sought, so as to guarantee
that all the network nodes asymptotically follow the reference
trajectory imposed by the pinner. To control directed networks,
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under suitable assumptions on the individual dynamics, if the
network graph admits a spanning tree, it suffices to pin the root of
this tree (Chen, Liu, & Lu, 2007). Otherwise, it is necessary to pin at
least one node in each root strongly connected component (RSCC)
of the network (Lu, Li, & Rong, 2010), that is, each SCC the nodes of
which have incoming edges only from nodes of the same SCC.

In this paper, we take a different point of view with respect
to Refs. Chen et al. (2007) and Lu et al. (2010). Inspired by the
work on controllability of large networks (DeLellis, Garofalo, &
Lo Iudice, 2016; Gao, Liu, D’Souza, & Barabási, 2014; Lo Iudice,
Garofalo, & Sorrentino, 2015), we consider the case in which, for
technological or economic reasons, the pinner signal can only reach
a limited number of nodes belonging to a given set. Moreover, to
allow coping with the limitations arising when dealing with non-
ideal actuators, see e.g. Ref. Ocampo-Martinez, Puig, Cembrano,
and Quevedo (2013), we assume that constraints exist on the value
of the coupling and control gainswhich could lead to pinning nodes
in non root SCCs to control the whole network. As these restric-
tions may not allow complete pinning controllability, a question
naturally arises: which nodes must be pinned to drag the greatest
number of nodes to the pinner’s trajectory?We call this the partial
pinning control problem and, after providing an analytic solution,
we translate it into an integer linear program (ILP). Moreover,
an optimization problem is formulated and solved to select the
pinning and coupling gains. The effectiveness of the approach is
then illustrated on a testbed example.

2. Mathematical preliminaries and notation

Let us consider a directed graph (digraph) G = {V, E}, where V
and E are the set of vertexes and edges of G, respectively. A is the
adjacency matrix of G, and its ijth element aij is greater than zero if
there exists an edge from j to i, while it is zero otherwise.Moreover,
the ijth element ℓij of the Laplacian matrix L of the digraph is equal
to −aij if j ̸= i while it is

∑N
j=1aij if j = i. Any digraph G can be

decomposed in its σ SCCs Gi = (Vi, Ei), where Vi is the set of nodes
of Gi and Ei = {(l,m) ∈ E : l,m ∈ Vi} the set of edges, and we label
the SCCs so that only the first ρ ≥ 1 are also RSCCs. The Directed
Acyclic Graph (DAG) condensation GD

= (VD, ED) of G is a graph
whose nodes represent the SCCs of G while (i, j) ∈ ED if, in G, there
exists at least an edge connecting a node of Vj to one of Vi. Every
node i of G has a set of nodes in its downstream, as we say that
node jI is in the downstream of node j1 (j1 is in the upstream of
jI ) if there exists a sequence {ℓji+1ji}

I−1
i=1 of nonzero entries of the

Laplacian L, that is, if there exists a directed path from node j1 to
node jI . We denote by Γ (Gi) (Γ T (Gi)) the set of nodes of G that are
only in the downstream (upstream) of the nodes in Vi, including
the nodes in Vi itself. Leveraging the decomposition in layers of a
DAG (Liu, Slotine, & Barabási, 2012), we can now define the levels
of a graph G.

Definition 1. Given G = (V, E) and a set of nodes Γ ⊆ V , the mth
level of Γ is

Rm := {Vl ⊆ Γ : ∃(i, j) ∈ Vl × Rm−1, ∄(i, j) ∈ Vl × Bm},

with Bm := {Vl ⊆ (Γ − ∪
m−1
k=0 Rk)}, R0 := {Vl ⊆ Γ : ∄(i, j) ∈

Vl × (Γ − Vl)}; b is the smallest integer such that Rb+1 = ∅.

In what follows, when referring to an SCC, we will use a double
subscript to identify the specific SCC the nodes of which are in a
given level of Γ . For instance, Vij will identify the set of nodes of
the ith SCC belonging to Rj, see Fig. 1. Finally, given a set χ , we
denote its cardinality by |χ |. diag{d1, . . . , dm} denotes the m × m
diagonal matrix with diagonal elements d1, . . . , dm, while 1m is
an m-dimensional vector of ones, and Im is the m × m identity
matrix.D+

m is the set of positive definite diagonalmatrices inRm×m.
Given a square matrix M ∈ Rm×m, we denote its symmetric part
Msym := 0.5(M + MT ) and its eigenvalues as λ1(M), . . . , λm(M).

Fig. 1. Representation of the sets R0,R1, . . . ,Rb on a sample DAG condensation
GD of a network graph G.

3. Partial pinning control

3.1. Problem formulation

We consider a linearly coupled network described by a digraph
G = {V, E}, where the N = |V| nodes are nonlinear dynamical
systems with state xi ∈ Rn, while the edges describe the intercon-
nections among the nodes. An extra node, the pinner, with state
s ∈ Rn and identical dynamics but different initial conditions, is
added to the network. A subset of V , say C, is the set of pinnable
nodes that can be directly controlled by the pinner. We call pinned
the nodes in P ⊆ C that actually receive an input from the pinner.
The network dynamics are

ẋi = f (xi, t) + c
N∑
j=1

aijH(xj − xi) − κδiH(xi − s), (1)

for i ∈ V , where ṡ = f (s, t) are the pinner’s dynamics, f :

Rn
× R+

→ Rn is the nonlinear vector field describing the node
dynamics, c, κ ∈ R are the coupling and control gains, respectively,
H ∈ Rn×n is the inner coupling matrix describing the information
exchanged among neighboring nodes, and δi = 1 if i ∈ P , and 0
otherwise.

Definition 2. Network (1) is q-partially pinning controlled to the
pinner’s trajectory when

lim
t→+∞

∥xi(t) − s(t)∥ = 0, i ∈ Q, (2)

where Q ⊆ V and q = |Q|; when q = N , network (3) is fully
pinning controlled, while when Vi ⊆ Q, then we say that the SCC
Gi is pinning controlled.

Problem 1. Partial pinning control.
q∗

= max
P⊆C

|Q|

|P| = p
c ≤ cM , κ ≤ κM .

(3)

Before illustrating the problem solution, we need to give the
following definition:

Definition 3 ( DeLellis, di Bernardo, & Russo, 2011; Lu & Chen, 2006).
Given two n × n matrices V > 0 and W , a vector field g :

Rn
× R+

→ Rn is QUAD(V ,W ) if (x − s(t))V (g(x, t) − g(s(t), t)) ≤

(x − s(t))TW (x − s(t)), for all x ∈ Rn, t ∈ R+, where s(t) is the
pinner trajectory.

3.2. Problem solution

Here, we give the conditions ensuring pinning controllability of
any given SCC to then translate Problem 1 into the maximization
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