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a b s t r a c t

The sensor resolution is a most basic parameter for nearly all kinds of sensors which is so important that
cannot be ignored for any signal processing problems. In this paper, the robust filtering problem is inves-
tigated for a class of stochastic systems with model uncertainty and non-logarithmic sensor resolution.
A novel soft measurement model (SMM) is proposed. It has advantages of zero mean sensor resolution-
induced uncertainty (SRU) and maximum signal resolution ratio (SRR). Based on the proposed model, a
new robust filter (RF) is put forward which takes both model uncertainty and sensor resolution into full
consideration. By designing the filter gain appropriately, the upper bound of estimation error covariance
is obtained and minimized at each time step. The corresponding filtering algorithm is recursive, thus
suitable for real-time online applications. Finally, a simulation study is carried out to demonstrate the
effectiveness and applicability of our proposed SMM and RF.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, the filtering problem has attracted persis-
tent attention from control community, communication commu-
nity, signal processing community, etc. There is no doubt that the
Kalman filter (KF) is a milestone in the filtering theory and the
related literature has grown from a trickle to a torrent (Gustafsson
& Hendeby, 2012; Karasalo & Hu, 2011; Mandic, Kanna, & Con-
stantinides, 2015). However, the KF demands the availability of
accurate system model, which is almost impossible in practice,
thus affecting its real application effects. As a result, a huge amount
of results have been reported on robust filtering in the literature.
Among them, there aremainly four kinds of robust filters that shed
insightful lights:H∞ filter (Abbaszadeh&Marquez, 2012; Abraham
& Kerrigan, 2015; Borges, Oliveira, Abdallah, & Peres, 2010; Lee,
Joo, & Tak, 2014), robust Kalman filter (Ahn & Truong, 2009; Li,
Ding, & Liu, 2014; Mohamed & Nahavandi, 2012), generalized H2
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filter (Palhares & Peres, 2000; Shen, Wu, & Park, 2014; Zhang, Zhu,
& Zheng, 2015), and peak-to-peak filter (Ahn, 2014; He& Liu, 2010;
Li, Shi, & Karimi, 2015). Their main differences lie in disturbance
assumptions and filtering objectives.

Meanwhile, with the rapid development of network technol-
ogy, a large number of efforts have been devoted to the study
of networked control systems (Argha, Li, Su, & Nguyen, 2016;
Gupta & Chow, 2010; Trivellato & Benvenuto, 2010; Zhang, He,
& Zhou, 2015). They have advantages of reduced weight, simple
installation, high flexibility, and low cost. However, in the network
environment, the sensors’ measurements are usually required to
be quantized before transmission. Therefore, the robust filter-
ing problem for quantized systems has become a popular topic.
In Gao and Chen (2007), a robust filter was designed for time-
invariant systems with polytopic uncertainty and imperfect out-
put measurements (that is measurement quantization, time delay,
and packet dropout) in both quadratic and parameter-dependent
frameworks. By solving a set of recursive linear matrix inequali-
ties, Shen, Wang, Shu, and Wei (2010) developed a finite-horizon
robust filter for time-varying systems with polytopic uncertainty,
random nonlinearities and quantization effects. In Liu, Ho, and
Niu (2010), the quantization error of the measurement output
was transformed into a bounded nonlinearity. Based on this new
model, a mode-dependent robust filter was presented for stochas-
tic switching systems.Wang, Li, Yin, Guo, andXu (2011) introduced
a observer design method for multi-input-single-output time-
invariant systems under irregular sampling and binary-valued
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sensors. In Yang, Liu, and Shi (2012), a full-order robust filter was
proposed for nonlinear systemswith state-dependent disturbance.
It took account of the effects of sensor saturation, measurement
quantization, and packet dropout simultaneously.

In recent years, some research efforts have also been made on
the robust filtering problemwith quantization effects. They require
to assume that the parameter uncertainty has a specific structure,
like norm-bounded structure or polytopic structure. The structure
and corresponding structural parameters of parameter uncertainty
are also required to be known beforehand. Besides, they usu-
ally assume that the quantization is caused by quantizer and its
form is logarithmic. Furthermore, the sensor resolution is one of
the most basic parameters for nearly all kinds of sensors, which
cannot be ignored for any signal processing problems. Although
the logarithmic quantizer-induced quantization has been studied
extensively, the non-logarithmic sensor resolution-induced un-
certainty (SRU) has rarely been considered in the filtering com-
munity, not to mention its quantitative influence on the filtering
performance.

So far, to the best of our knowledge, the robust filtering problem
for stochastic linear time-varying (LTV) systems with both non-
structural model uncertainty and non-logarithmic SRU has yet
not been fully investigated. It is due probably to difficulties in
simultaneously processing both non-structural model uncertainty
and non-logarithmic SRU. Besides, the stochastic characteristic of
model uncertainty and SRU adds substantial challenge to filter
analysis and design, especially when the upper bound of estima-
tion error covariance is required to be obtained and minimized at
each time step. Our work presents a new robust filter framework
and makes it possible to achieve favorable filtering performance
using only resolution limited sensors, thus can greatly reduce
the costs. The main contributions can be highlighted as follows:
(1) a novel soft measurement model (SMM) is proposed which is
optimal in the sense of maximum signal resolution ratio (SRR); (2)
a new robust filter (RF) is proposed for stochastic uncertain systems
which fully utilizes the information of both model uncertainty and
sensor resolution; (3) the upper bound of estimation error covariance
is obtained and minimized iteratively with proper filter gain design;
(4) our developed filtering algorithm is recursive, thus suitable for
real-time online applications.

Notations. Except where otherwise stated, the notations used
throughout this paper are fairly standard. Rn and Rn×m denote
the n dimensional Euclidean space and the set of all n × m
real matrices, respectively. In×n stands for the identity matrix
with n rows and n columns (1 at the (i, i)th entry and 0 else-
where), and 0n×m ∈ Rn×m stands for the null matrix (0 at all
entries). The scalar x(i) stands for the ith entry of the vector
x ∈ Rn. ES{A} is the mathematical expectation of a stochas-
tic variable A over the set S. The notation S (m, n) denotes the
set {m,m + 1, . . . , n} , (m ∈ Z, n ∈ Z,m ≤ n). Given a set V =

{n1, n2, . . . , nm} , (n1 ≤ n2 ≤ · · · ≤ nm), rowi∈V {Ai}, coli∈V {Ai},
respectively, represent the block-row matrix

[
An1 An2 · · · Anm

]
and block-column matrix

[
An1

T An2
T

· · · Anm
T]T. Given a matrix

A ∈ Rn×m, A {i1 : i2, j1 : j2} ∈ R(i2−i1+1)×(j2−j1+1) denotes the
matrix which is composed of matrix A’ entries (rows i1 to i2,
columns j1 to j2). row {A, i} denotes the vector

[
ai1 ai2 · · · aim

]T
.

The notations prow (A), µA, and ΣA denote coli∈S(1,n) {row {A, i}},
E {A}, and E

{
prow (A) prow(A)T

}
, respectively. Scalars are in italic,

and matrices are in bold. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic op-
erations.

2. Problem formulation

Consider a class of stochastic discrete-time LTV systems de-
scribed by the following state-space model:

x (k + 1) = (Ac (k) + Aδ (k)) x (k)

+ (Bc (k) + Bδ (k))u (k) + w (k) , k ∈ N,
(1)

where x(k) ∈ Rnx is the system state, u(k) ∈ Rnu is the control
input, and w(k) ∈ Rnx is the process noise. Ac (k) ∈ Rnx×nx ,
Bc (k) ∈ Rnx×nu are known deterministic process parameter ma-
trices of appropriate dimensions. Aδ (k) ∈ Rnx×nx , Bδ (k) ∈ Rnx×nu

represent corresponding unknown stochastic process parameter
uncertainty.

Before proceeding further, let us first give some basic defini-
tions.

Definition 1. Suppose that Y is the measurement of real sensor
belonging to the set V , then the sensor resolution r is defined as
the smallest change the sensor can detect in the quantity that it is
measuring, i.e.,r = max

{
s
⏐⏐Y

s ∈ Z,Y ∈ V
}
. And the perfect sensor

is referred to the sensor with zero resolution.

Definition 2. Suppose that Y is the measurement of real sensor,
y is the measurement of perfect sensor belonging to the set S (Y),
and ∆ (Y) is the SRU, satisfying Y = y + ∆ (Y). Then the SRR is
defined as

SRR (Y) =
∥y∥2

2

ES(Y)

{
∥∆ (Y)∥2

2

} . (2)

Definition 3. Given two matrices X ∈ Rn×m and Y ∈ Rp×q whose
entries are stochastic variables, we call X and Y are independent
of each other if and only if their entries are independent of each
other.

Assume that system (1) is monitored by N different classes of
sensors. The perfectmeasurementmodel (PMM) of perfect sensors
is as follows:

yi (k) =
(
Cc,i (k) + Cδ,i (k)

)
x (k) + vi (k) , i ∈ S (1,N) , (3)

where yi(k) ∈ Rnyi is the perfect measurement (PM) of the sensors
of class i, and vi(k) ∈ Rnyi is the corresponding measurement
noise. Cc,i (k) ∈ Rnyi×nx is the known deterministic measurement
parameter matrix of the sensors of class i, and Cδ,i (k) ∈ Rnyi×nx

represents corresponding unknown stochastic measurement pa-
rameter uncertainty.

The real measurement model (RMM) of real sensors with reso-
lution ri > 0nyi×1 is as follows:

Y i (k) =
(
Cc,i (k) + Cδ,i (k)

)
x (k) + vi (k) + ∆ (Y i (k)) ,

Yi(k)(j)

ri(j)
∈ Z, j ∈ S

(
1, nyi

)
,

(4)

whereY i (k) is the real measurement (RM) of the sensors of class i,
and ∆ (Y i (k)) is the corresponding SRU. The measurement noise
and SRU are two different types of uncertainty with completely
different characteristics. The superscript (j) means the jth sensor
in the ith class, and the total number of sensors is

∑N
i=1nyi .

The following assumptions are made throughout this paper.

Assumption 1. The initial state x (0) has the mean x̄0, covari-
ance P0, and second moment Σ0. The noise w (k) and vi (k) are
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