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a b s t r a c t

This paper presents a method to design output feedback control for discrete-time linear systems, affected
by bounded additive state, output disturbances, and subject to chance constraints on the state and hard
constraints on the control input. This method relies on a so-called convex lifting which is a nonnegative,
convex, piecewise affine function, equal to 0 over a given stochastic positively invariant set and strictly
positive outside this set. Accordingly, it is shown that this function is strictly decreasing along the closed-
loop dynamics outside this invariant set and convergent to 0 as time tends to infinity. Consequently, the
state is convergent to the given invariant set, while the method only requires solving a linear program at
each sampling instant.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic control has recently received growing interest, as
it provides a relaxation over robust control. This relaxation is
represented by the allowance of an acceptable rate of failures, since
the worst cases are usually unlikely. In the language of stochastic
programming, e.g. in Prékopa (2013), these failures aremodeled by
constraints’ violation, i.e., the probability of constraints’ violation
is smaller than a pre-defined rate. Such constraints are usually
referred to as chance/probabilistic constraints. Control design for
systems subject to those constraints needs new development in
comparison to its counterpart subject to deterministic constraints,
a survey on this topic is presented in Calafiore, Dabbene, and
Tempo (2011). In Cannon, Kouvaritakis, Raković, and Cheng (2011)
and Kouvaritakis, Cannon, Raković, and Cheng (2010), the authors
present approaches relying on model predictive control (MPC),
where closed-loop stability is guaranteed by means of suitable
terminal constraints. However, these approaches cannot guarantee
the recursive feasibility if the closed loop goes beyond the feasible
region. This limitation is resolved in Lorenzen, Allgower, Dabbene,
and Tempo (2015) by adding a constraint ensuring that the state
stays inside the feasible region despite any disturbances in the
given bounded set. Accordingly, the problem reduces to solving a
quadratic program at each sampling instant. On the other hand,
to deal with this control design problem, Calafiore and Fagiano
(2013) present a scenario approach in the context of MPC. The
method does not require the convexity of the disturbance sets, its
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online computation becomes however much more expensive than
the aforementioned methods, since a sufficiently large number of
samples are chosen to guarantee the chance constraints, leading
to an exponential number of constraints along with the predic-
tion horizon. Recall that the boundedness of disturbances is not
assumed therein, but it is implicitly accounted for since thenumber
of samples is finite. In addition to the above MPC approaches, set-
theoretic approach is also proposed in Kofman, De Doná, and Seron
(2012). This study introduces a computation technique of a proba-
bilistic invariant set, which guarantees the positive invariance with
a big enough probability, while not assuming the boundedness of
disturbances. However, constraints are not accounted for therein.
Furthermore, making use of this technique to compute the feasible
region is not trivial.

When the measurement noise is considered, the problem be-
comes output feedback control design subject to chance con-
straints. Control design in this case is more difficult, as a suitable
observer is designed to estimate the state, which leads to the
fact that the error between the real state and the estimated state
is not independent, identically distributed disturbance. Although
many studies have been dedicated to stochastic output feedback
control design, e.g. Boukas (2006) andDeng andKrstic (1999),most
of them do not take constraints into account which is a crucial
problem, since it is directly related to the determination of the
feasible region.

Note also that set-theoretic methods are shown in Blanchini
(1994) and Nguyen, Olaru, Rodríguez-Ayerbe, and Kvasnica (2017)
to be cheaper than MPC in the robust context. Motivated by the
benefit of set-theoretic methods, this paper presents the so-called
convex lifting approach in the context of stochastic control, which
does not require terminal constraints to ensure closed-loop sta-
bility as in MPC methods. Moreover, chance constraints on the
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state and hard constraints on the control variable are taken into
account, allowing for a feasible region larger than the one in the
robust case. To this end, computation of a stochastic positively
invariant set and of the feasible region is proposed to cope with
the given chance constraints by means of relevant convex inner
approximations which only depend on the mean value and the
standard deviation of the disturbances. Unlike the feasible region
deployed in Blanchini (1994) and Nguyen, Kvasnica et al. (2017),
the one presented in this paper does not inherit the contractivity
property. Subsequently, we construct a real-valued, nonnegative,
convex, piecewise affine function defined over the feasible region,
usually referred to as a convex lifting. In particular, unlike a control
Lyapunov function which is equal to 0 only at the origin, this
function is instead equal to 0 over the given stochastic positively
invariant set and strictly positive outside this set. Accordingly, it
is shown that this function is strictly decreasing along the closed-
loop dynamics outside this set and convergent to 0, as time tends
to infinity, leading to the fact xk converges to the given stochastic
positively invariant set. Moreover, the proposed control design
only requires solving a linear program at each sampling instant.
Therefore, this method might be useful for systems with fast dy-
namics like cantilever beam system. More clearly, either implicit
or explicit solution could be deployed at the hardware level, the
real-time implementation of explicit solution for this systembased
on convex lifting is referred to Gulan et al. (2017a, 2017b).

Nomenclature: throughout this paper,N,N>0,R,R+ denote the set
of nonnegative integers, the set of positive integers, the set of real
numbers and the set of nonnegative real numbers, respectively.
Also, I denotes an identity matrix of suitable dimension. For ease
of presentation, we denote the index set IN := {1, 2, . . . ,N} with
N ∈ N>0. A polyhedron is the intersection of finitely many closed
halfspaces. A polytope is a bounded polyhedron. If P is an arbitrary
polytope, thenV(P) denotes the set of its vertices. IfS is an arbitrary
set, then conv(S) denotes the convex hull of S. Given a set S ⊂ Rd

and a matrix A ∈ Rm×d, then AS := {As : s ∈ S} . Also, for a
vector x ∈ Rd, define ρS(x) := min

y∈S

√
(y− x)T (y− x). Given two

sets S1, S2 ⊂ Rd, their Minkowski sum S1 ⊕ S2 is defined as:
S1 ⊕ S2 :=

{
y1 + y2 ∈ Rd

: y1 ∈ S1, y2 ∈ S2
}
. Also, S1 \ S2 is

defined as follows: S1 \ S2 :=
{
x ∈ Rd

: x ∈ S1, x ̸∈ S2
}
. Given a

randomvariable ξ ∈ Rd,weuse E(ξ ), cov(ξ ) to represent themean
value and the covariance matrix of ξ . Pr(·) implies the probability
of an event.

2. Problem settings

In this paper, we consider a discrete-time linear system:

xk+1 = Axk + Buk + wk, yk = Cxk + vk, (1)

where xk, uk denote the state, control variable at time k and wk, vk
represent the additive state and output disturbances at time k,
respectively. We assume that wk, vk for all k ∈ N are zero-mean,
mutually independent random variables and they fulfill:

wk ∈ W, vk ∈ V.

Also, suppose system (1) satisfies the following properties.

Assumption 2.1. The pair (A, B) is controllable and the pair (A, C)
is observable.

As the state is allowed for an acceptable rate of constraints’
violation, it is subject to the following chance constraints:

Pr(xk ∈ X) ≥ 1− α, (2)

where α ∈ (0, 1) represents a given constant scalar. On the other
hand, the control variable is subject to hard constraints:

uk ∈ U. (3)

With respect to given dx, du, dy ∈ N>0, it is assumed that the sets
X ⊂ Rdx , U ⊂ Rdu , W ⊂ Rdx , V ⊂ Rdy are polytopes containing
the origin in their interior.

This paper aims to present a control design method which can
both stabilize system (1) and satisfy the chance constraint (2)
and the hard constraint (3). A common approach to dealing with
measurement noise is to make use of a Luenberger observer, see
further in Luenberger (1964):

x̂k+1 = Ax̂k + Buk + L(yk − ŷk), ŷk = Cx̂k. (4)

Accordingly, if one defines ek = xk − x̂k, then the behavior of ek is
described by the following autonomous system:

ek+1 = (A− LC)ek + wk − Lvk. (5)

Since wk ∈ W, vk ∈ V, the disturbance of system (5) satisfies
wk−Lvk ∈ W⊕(−LV). If one chooses a suitable observer gain L such
that A − LC is strictly stable, then there exists a robust positively
invariant set denoted byΩe for system (5) according to Gilbert and
Tan (1991). Note also that the observer system (4) can be written
in the form:

x̂k+1 = Ax̂k + Buk + Lvk + LCek, ŷk = Cx̂k. (6)

Accordingly, if one considers Lvk + LCek as additive disturbance of
system (6) and e0 ∈ Ωe, then the robust positive invariance of Ωe
yields Lvk + LCek ∈ LV ⊕ LCΩe. As a consequence, the control
design problem for system (1) subject to the constraints (2), (3) is
translated to the one for system (6) subject to the following:

Pr(x̂k + ek ∈ X) ≥ 1− α, (7a)
uk ∈ U, Lvk + LCek ∈ LV⊕ LCΩe, (7b)

where ek for all k ∈ N are not mutually independent, but follow
the dynamic equation (5) and their mean value depends on time
and the initial condition. For ease of presentation, let Σ0, Σw,

Σv denote the covariance matrices of e0, wk and vk, respectively.
Assume that the initial condition e0 fulfills:

Assumption 2.2. e0 is a zero-mean random variable, independent
with wk, vk for all k ∈ N. Also, e0 ∈ Ωe and its covariance matrix
satisfies:

Σ0 ≤

∞∑
j=0

(A− LC)j(Σw + LΣvLT )
(
(A− LC)j

)T
.

One can easily see that E(ek+1) = 0 and the covariance matrix
of ek+1 is determined as follows according to (5):

cov(ek+1) = (A− LC)k+1Σ0((A− LC)k+1)T+

k∑
i=0

(A− LC)i(Σw + LΣvLT )((A− LC)i)T .

According to Assumption 2.2, the above equation yields Σe ≥

cov(ek) for all k ∈ N, where

Σe =

∞∑
j=0

(A− LC)j(Σw + LΣvLT )
(
(A− LC)j

)T
.

Note also that A − LC is strictly stable, Σe is thus upper bounded
and can be computed by the Lyapunov equation

Σe = Σw + LΣvLT + (A− LC)Σe(A− LC)T . (8)
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