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a b s t r a c t

This paper is concerned with the network-based practical set consensus problem of multi-agent systems
subject to input saturation constraints. Considering network-induced delays, data quantization and ape-
riodic sampling intervals, a network-based frameworkwhich allows each agent to be remotely controlled
over the communication network is established. Under this framework, a new network-based consensus
protocol with input saturation constraints is proposed. With this protocol, the consensus problem can
be transformed into the stabilization problem of time-delay systems with bounded perturbations. By
using the Lyapunov–Krasovskii approach, a stability condition guaranteeing that the error system can
exponentially converge to a bounded set is derived,where the region of initial conditions can be estimated
by considering the effect of the first delay interval. Based on this stability condition, the network-
based consensus controller gain matrix can be obtained. An optimization algorithm is introduced for
simultaneously designing the consensus controller gain and estimating the region of attraction as small as
possible and the region of initial conditions as large as possible. A numerical example is given to illustrate
the efficiency of all the results derived in this paper.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, consensus of multi-agent systems (MASs),
which means that all agents’ states converge to the same vector
under agents’ interaction, have drawn considerable attention due
to its wide applications such as formation control, distributed
sensor networks, attitude of spacecraft alignment and so on (Olfati-
Saber & Murray, 2004). There have been a large number of re-
sults available on the consensus problem of MASs from various
viewpoints, see, e.g., Li, Duan, Chen, and Huang (2010), Li, Ren,
Liu, and Xie (2013), Olfati-Saber and Murray (2004), Qin, Ma, Shi,
and Wang (2017), Ren (2008) and Yu, Chen, and Cao (2010). In
many applications, since there exist some physical restrictions
and communication constraints, MASs may only reach a bounded
set region compassing the equilibrium, which is usually named
practical consensus of MASs. Some related research work can be
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found in Ceragioli, De Persis, and Frasca (2011), Li, Ho, and Lu
(2013) and Shi and Hong (2009).

The rapid advances of digital technologies in sensing, computa-
tion and communication make it feasible that MASs are controlled
using digital controllers. Hence, recently, consensus of MASs based
on sampled-data control has been widely investigated (Cao & Ren,
2010; Chen, Li, & Jiao, 2013; Ding & Zheng, 2016; Guo, Ding, &
Han, 2014; Qin & Gao, 2012; Yu, Zheng, Chen, Ren, & Cao, 2011).
Note that most of these literatures focus on MASs with a point-
to-point control structure. However, in some special working en-
vironments such as deep oceans, unmanned zones and primitive
forests, it is more desirable to remotely operate the entire agent
system through a communication network. Such control imple-
mentations can bring about benefits such as low cost, reduced
system wiring, and simple installation and maintenance. As a re-
sult, a network-based framework for cooperative control of MASs
was proposed in Ding, Han, and Guo (2013) and Ding and Zheng
(2017), where a waiting mechanism was employed to handle the
asynchronous effect of network-induced delays. Besides, both the
limited capacity of communication channels and data quantiza-
tion are two important practical communication constraints that
should be carefully dealt with. Many research works on quantized
consensus problem for MASs have been done, such as Ceragioli et
al. (2011), Chen et al. (2013), Li, Fu, Xie, and Zhang (2011) and

https://doi.org/10.1016/j.automatica.2017.12.001
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2017.12.001
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.12.001&domain=pdf
mailto:dl522@163.com
mailto:w.zheng@westernsydney.edu.au
mailto:geguo@yeah.net
https://doi.org/10.1016/j.automatica.2017.12.001


L. Ding et al. / Automatica 89 (2018) 316–324 317

Li, Ho et al. (2013). A precise mathematical treatment for first-
order integrator systems with quantization and time delay was
provided in Li, Ho et al. (2013). However, because of complicated
network environments, it is difficult to directly apply these results
to networked control multi-agent systems. It should be pointed
out that the network-based framework in Ding et al. (2013) and
Ding and Zheng (2017) considered network-induced delays but
ignored quantization. Therefore, this motivated us to further in-
vestigate the networked-based consensus of MASs with both
network-induced delays and quantization.

On the other hand, in practical applications, MASs may be
inevitably subject to magnitude limitation of control input due to
their physical properties. Such limitation may degrade the system
performance, or even cause instability. Thus, it is of great signif-
icance to study MASs with input saturation. So far, some results
on consensus problems of MASs subject to input saturation con-
straints have been reported in the literature (Li, Xiang, &Wei, 2011;
Meng, Zhao, & Lin, 2013;Qin, Fu, Zheng, &Gao, 2017; Ren, 2008; Su,
Chen, Lam, & Lin, 2013; Su, Chen, Wang, & Lam, 2014; Wang, Yu, &
Gao, 2014; Yang,Meng, Dimarogonas, & Johansson, 2014). Inmulti-
agent consensus, input saturation constraints were considered for
the single integrator case (Li, Xiang et al., 2011) and the double in-
tegrator case (Ren, 2008). By using the low gain feedback method,
semi-global leader-following consensus of MASs with switching
topology was studied in Su et al. (2013), which was extended to
the cases of output feedback in Su et al. (2014). The global leader-
following consensus problem for identical linear MASs subject to
actuator saturation under fixed undirected network topologies and
time varying network topologies was addressed in Meng et al.
(2013). These results were then extended in Yang et al. (2014)
to the discrete-time case. Some conditions for achieving semi-
global synchronization for the case of unstable eigenvalues on the
imaginary axis were provided in Wang et al. (2014). However,
these existing results may be no longer applicable, when it comes
to the network-based consensus of MASs, especially, in the pres-
ence of network-induced delays and quantization simultaneously.
Therefore, it remains an openproblem to find an effective approach
to the network-based consensus of MASs with input saturation.

This paper mainly focuses on network-based practical set con-
sensus tracking of linearMASs subject to input saturation. Different
from Ding et al. (2013) and Ding and Zheng (2017) where only
network-induced delays were considered, we further explore a
comprehensive network-based control framework of MASs with
network-induced delays, uniform quantization and input satura-
tion constraints.Under this framework, our concerning issues fall into
three aspects: (1) how to study the impacts of network-induced delays,
data quantization and input saturation constraints on consensus per-
formance ofMASs, i.e., both regions of attraction and initial conditions,
respectively? (2) how to design an appropriate consensus controller
under such constraints? (3) how to optimize both regions of attraction
and initial conditions? In order to address these issues, regarding
uniform quantization and input saturation as ‘perturbations’, the
consensus problem is transformed into the stabilization problem
of time-delay systems with bounded perturbations. The contribu-
tions of the paper are summarized as follows:

(i) A sufficient condition for practical set exponential consen-
sus is derived, which reveals the comprehensive effects of
network-induced delays, uniform quantization and input
saturation on the consensus performance;

(ii) Different from Su et al. (2013, 2014) andWang et al. (2014),
an estimate on the region of initial conditions can be com-
puted by taking into account the first delay interval and
using the Lyapunov–Krasovskii (LK) method;

(iii) Compared with the existing results in Meng et al. (2013), Su
et al. (2013), Wang et al. (2014) and Yang et al. (2014) based
on the requirement that the form of consensus controller
gain is given a priori, an effective approach is provided to
design the network-based consensus controller gain;

(iv) A two-step optimization algorithm is developed for simul-
taneously obtaining the consensus controllermatrix and the
estimates of the smallest region of attraction and the largest
initial region.

2. Notation and preliminary

2.1. Notation

Rn represents the n-dimensional Euclidean space. IN is an iden-
tity matrix with dimension N and diag{·} stands for a block-
diagonal matrix. The superscript T for matrix denotes matrix
transposition, and the symbol ⊗ represents the matrix Kronecker
product. |·| and ∥ · ∥ stand for the absolute value of a scalar and for
the Euclidean norm of a vector, respectively. A(i) and A(i,i) denotes
the ith row and the diagonal element of matrix A, respectively. For
symmetric matrices P and Q , P ≻ Q and P ≺ Q (P ⪰ Q and
P ⪯ Q ) means that matrix P − Q is positive and negative definite,
respectively (positive and negative semi-definite, respectively).
Sym{A} represents A+AT . The symmetric elements in a symmetric
matrix are denoted by ∗. ⌊a⌋ is a round floor function denoting
the greatest integer that is less than or equal to a. For a scalar
a > 0 and b, sata(b) : R → R is a saturation function defined as
sata(b) ≜ sign(b)min{|b|, a}. For a vector b = [b1, b2, . . . , bn]T ∈

Rn, sata(b) ≜ [sata(b1), sata(b2), . . . , sata(bn)]T . Let d
(
x, E

)
=

infy∈E∥x−y∥ represents the Hausdorff distance from x to E . Denote
by Ii a block entry matrix with an identity matrix I and let Ii,j ≜
Ii − Ij.

2.2. Graph theory

Let G = {∆, E,W} denote a directedweighted graph ofN order,
where ∆ = {v1, v2, . . . , vN} and E ⊆ ∆ × ∆ are the set of nodes
and edges, respectively. W = [wij] ∈ RN×N represents a weighted
adjacency matrix with wii = 0 for any i. Node vj is considered
as a neighbor of node vi if node vi can receive information from
node vj, and let Ni be the neighbor set of node vi. It is assumed that
wij > 0 if j ∈ Ni, otherwise, wij = 0. The degree matrix of graph
G is denoted by Λ = diag{ϖ1, ϖ2, . . . ,ϖN}, where the diagonal
element is given by ϖi =

∑
wij. Correspondingly, the Laplacian

matrix of graph G is defined by L = Λ − W .
Denote G̃ by a graph which contains N follower nodes and

a leader node. It is assumed that the leader does not receive
any information from the followers. A diagonal matrix M =

diag{m1,m2, . . . ,mN} ∈ RN×N is referred to as the leader adja-
cency matrix. If the leader is a neighbor of node vi, then mi > 0;
otherwise, mi = 0. A path is a sequence of connected edges in a
graph. If there is a path in G̃ from each follower node i in G to the
leader node, then the leader node is globally reachable in G̃. For the
connectivity of graph, the following assumption is given.

Assumption 1. The leader is globally reachable in graph G̃.

2.3. Uniform quantizer

Here, a uniform quantizer can be described in Ceragioli et al.
(2011) and Li, Ho et al. (2013) as a map q : R → R such that
q(x) = Θ

⌊ x
Θ

+
1
2

⌋
, where Θ > 0 is a constant number. For a

uniform quantizer, the quantization error is always bounded by Θ
2 ,

i.e., |x − q(x)| ≤
Θ
2 , ∀x ∈ R. And it holds that xq(x) ≥ 0, ∀x ∈ R,



Download English Version:

https://daneshyari.com/en/article/7109187

Download Persian Version:

https://daneshyari.com/article/7109187

Daneshyari.com

https://daneshyari.com/en/article/7109187
https://daneshyari.com/article/7109187
https://daneshyari.com

