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a b s t r a c t

In this paper, the robust adaptive control design problem is studied for a class of non-triangular nonlinear
systems with unmodeled dynamics and stochastic disturbances. It is assumed that the states of the
systems to be controlled are unmeasurable, and thus an adaptive state observer is first developed. By
utilizing the stochastic small-gain theorem and the backstepping recursive design procedure, a robust
adaptive output feedback control scheme is then proposed. It is shown that all the signals in the resulting
closed-loop system are bounded in probability, and the system output converges to a small residual set
of the equilibrium in probability.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, some effective robust adaptive control
methods have been proposed for uncertain nonlinear systems
(Chen, Ge, & Ren, 2011; Ge, Hong, & Lee, 2005; Ge & Tee, 2007;
Li, Chen, Fu, & Sun, 2016; Li, Yang, Su, Deng, Sun, & Zhang, 2015;
Zhang, Cui, & Luo, 2013; Zhang, Cui, Zhang, & Luo, 2011). It should
be noted that all the aforementioned results are developed under
a restrictive assumption that the nonlinear systems under consid-
eration are in a strict-feedback form, in other words, in triangular
structure, and these control methods for strict-feedback nonlinear
systems cannot be directly used to stabilize non-triangular nonlin-
ear systems. It is well known that for a strict-feedback nonlinear
system, if applying the backstepping control design procedure, the
state variable xi+1 (i = 1, . . . , n−1) is regarded as the control input
for the ith subsystem, and a virtual control function αi is designed
to stabilize the ith subsystem. To guarantee the existence of virtual
control function αi, αi should be the function of partial state vector
x̄i = [x1, . . . , xi]T , which is exactly the case for a strict-feedback
nonlinear system. However, for a non-triangular nonlinear system,
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its nonlinear function fi(·) in each subsystem includes the whole
state vector x = [x1, . . . , xn]T instead of partial state vector x̄i =

[x1, · · · , xi]T . In this case, if the traditional backstepping control
design procedure is adopted, virtual control function αi would
be the function of whole state vector x = [x1, . . . , xn]T , which
would lead to the so-called algebraic loop problem and thus the
traditional backstepping control design procedure would fail. By
utilizing the monotonously increasing property of the bound-
ing functions, Chen, Liu, and Ge (2012) and Wang, Liu, Liu, and
Karimi (2015) proposed a so-called variable separation technique,
and developed robust adaptive control design methods for SISO
non-triangular nonlinear systems. Chen, Zhang, and Lin (2016),
Li and Tong (2017) and Tong, Li, and Sui (2016) further devel-
oped the observer-based robust adaptive control schemes for non-
triangular nonlinear systems with unmeasurable states. However,
it should benoted that the abovementioned results donot consider
the issue of unmodeled dynamics.

It is well known that unmodeled dynamics widely exist in
biological systems, economical systems, and other various engi-
neering applications. It is one of the main sources leading to the
instability or poor performance of systems (Jiang & Praly, 1998).
By utilizing the input-to-state practical stability (ISpS)method and
small-gain theory, a robust adaptive control approach was devel-
oped for deterministic SISO nonlinear systems with unmodeled
dynamics in Jiang (1999). Robust adaptive control strategies were
then proposed for stochastic nonlinear systems with unmodeled
dynamics in Tong, Wang, Li, and Zhang (2013) and Wu, Xie, and
Zhang (2007). However, it should be noted that the nonlinear
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systems under consideration in Jiang (1999), Tong et al. (2013)
and Wu et al. (2007) are all in triangular form. As argued before
for deterministic nonlinear systems, those control approaches for
triangular stochastic nonlinear systems cannot be directly applied
to control non-triangular stochastic nonlinear systems with un-
modeled dynamics. In fact, to our best knowledge, there is no result
in open literature on robust adaptive control of non-triangular
stochastic nonlinear systems with unmodeled dynamics.

Motivated by the observation, this paper investigates the ro-
bust adaptive output feedback control problem for non-triangular
stochastic nonlinear systems with unmodeled dynamics. By utiliz-
ing the backstepping technique and the stochastic small-gain the-
ory, a new robust adaptive fuzzy output feedback control scheme
is proposed. It is shown that all the signals in the resulting closed-
loop system are bounded in probability, and the system output
converges to a small neighborhood of the equilibrium in proba-
bility. Compared to existing works, our main contributions can be
described in twoaspects: (i) this is the firstwork on robust adaptive
control for uncertain non-triangular stochastic nonlinear systems
with unmodeled dynamics; and (ii) the algebraic loop problem is
solved without assumption that the unknown nonlinear property
or functions satisfy monotonically increasing or global Lipschitz
conditions (Chen et al., 2012, 2016; Li & Tong, 2017; Wang et al.,
2015).

2. Problem formulations and some preliminaries

2.1. Problem formulation

Consider a class of non-triangular stochastic nonlinear systems
with unmodeled dynamics described as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dζ = q1(x, ζ )dt + q2(x, ζ )dw
dxi = [fi(x) +∆i(x, ζ ) + xi+1]dt + gi(x)dw,

1 ≤ i ≤ n − 1
dxn = [fn(x) +∆n(x, ζ ) + u]dt + gn(x)dw
y = x1

(1)

where y ∈ R and u ∈ R are system output and input respectively,
and x = [x1, . . . , xn]T is the state of the system. ζ ∈ Rn0 is
the state of unmodeled dynamics and ∆i(x, ζ ) is a disturbance.
fi(x) is an unknown smooth nonlinear function. q1(x, ζ ), q2(x, ζ ),
gi(x) and ∆i(x, ζ ) are uncertain functions, and satisfy the locally
Lipschitz condition. w ∈ R is an independent standard Wiener
process defined on a complete probability space. In this paper,
x2(t), . . . , xn(t) are assumed to be unmeasurable, and y is the only
measurable variable. The system under consideration is assumed
to be completely controllable and observable, and the origin is the
equilibrium point.
Control Objective: our control objective is to design an observer-
based robust adaptive controller for the system (1) such that: (i)
all the signals in the resulting closed-loop system are bounded in
probability; and (ii) the output y converges to a small neighbor-
hood of the equilibrium in probability.

In order to achieve the control objective, the following assump-
tions are needed.

Assumption 1 (Jiang, 1999; Tong et al., 2013; Wu et al., 2007).
Disturbance ∆i(x, ζ ) (1 ≤ i ≤ n) and uncertain function gi(x)
respectively satisfy the following inequalities

|∆i(x, ζ )| ≤ p∗

i yψ̄i1(y) + p∗

i ψi2(|ζ |)
|gi(x)| ≤ p∗

i yψ̄i3(y)
(2)

where p∗

i is an unknown positive constant, and ψ̄i1 and ψ̄i3 are
known smooth functions; ψi2 is a nonnegative known smooth
function, and satisfies ψi2(0) = 0.

Assumption 2 (Tong et al., 2013; Wu et al., 2007). For unmodeled
dynamic ζ , there is a Lyapunov function V̄0(ζ ) satisfying

α0(|ζ |) ≤ V̄0(ζ ) ≤ ᾱ0(|ζ |)
ℓV̄0 ≤ −α0(|ζ |) + γ0(|y|) + d̄0

where d̄0 is a positive constant; α0, γ0, α0 and ᾱ0 are κ∞-functions;
and ℓ denotes the infinitesimal generator.

Remark 1. It is worth pointing out that Assumptions 1 and 2
are standard assumptions for nonlinear systems with unmodeled
dynamic, and similar assumptions can be found in literatures like
(Jiang, 1999; Tong et al., 2013; Wu et al., 2007).

2.2. Input-to-state practical stability in probability (ISpSiP)

Consider the following stochastic nonlinear system

dx = f (x, u)dt + g(x, u)dw(t) (3)

wherew is a r-dimensional independent standardWiener process,
u ∈ Rm is the input and x ∈ Rn is the state. g(·): Rm+n

→ Rn+r and
f (·): Rm+n

→ Rn satisfy the locally Lipschitz condition respectively,
and g(0, 0) = 0, f (0, 0) = 0.

Define the infinitesimal generator ℓV (x) of C2 positive function
V (x): Rn

→ R along with (3) as follows,

ℓV (x) =
1
2
Tr{gT (x, u)

∂2V
∂x2

g(x, u)} +
∂V (x)
∂x

f (x) (4)

where Tr(X) denotes the trace of matrix X .

Definition 1 (Wu et al., 2007). If for any ε > 0 and t ≥ 0, there
exist a nonnegative constant d, a κ∞-function γ and a κℓ-function
β such that

P{|x(t)| < d + γ (∥ut∥) + β(|x(0)| , t)} ≥ 1 − ε,

for any x0 ∈ Rn
\ {0},

(5)

where ∥ut∥ = supt≥s≥t0 ∥u(s)∥ and P(·) denotes probability, then
system (3) is said to be ISpSiP.

Lemma 1 (Wu et al., 2007). For stochastic nonlinear system (3), if
there are a non-negative constant d, a C2 function V (x), a κ-function
α, κ∞-functions χ , α and ᾱ satisfying the following inequalities

ᾱ(|x|) ≥ V (x) ≥ α(|x|) (6)

ℓV (x) ≤ d + χ (|u|) − α(|x|) (7)

then the stochastic nonlinear system (3) is ISpSiP.

2.3. Stochastic small-gain theorem

Consider the following stochastic interconnected nonlinear sys-
tem,

dx1 = g1(x1, x2,Σ1)dw1t + f1(x1, x2,Σ1)dt
dx2 = g2(x1, x2,Σ2)dw2t + f2(x1, x2,Σ2)dt

(8)

where w1t and w2t are independent standard Wiener processes;
Σi(i = 1, 2) denote uncertainties, and x = [x1, x2]T ∈ Rn1+n2 is
the state of the interconnected nonlinear system (8). The following
stability result is available.

Lemma 2 (Stochastic Small-Gain Theorem). (Wu et al., 2007). As-
sume that subsystems x1-system and x2-system of (8) are ISpSiP with
(Σ1, x2) as input and x1 as state, and (Σ2, x1) as input and x2 as
state, respectively, i.e., for any positive constants ε1 and ε2, there exist
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