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a b s t r a c t

Mode observability of switched systems requires observability of each individual mode. We consider
other concepts of observability that do not have this requirement: Switching time observability and
switch observability. The latter notion is based on the assumption that at least one switch occurs. These
concepts are analyzed and characterized both for homogeneous and inhomogeneous systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Mode observability of switched systems is concerned with re-
covering the initial state as well as the switching signal from the
output (and the input) and has been widely studied, see e.g. Vidal,
Chiuso, Soatto, and Sastry (2003) for homogeneous systems, El-
hamifar, Petreczky, and Vidal (2009) for inhomogeneous discrete-
time systems, Babaali and Pappas (2005) for a generic observability
notion of inhomogeneous systems and Lou and Si (2009) for in-
homogeneous systems. For a recent overview of observability for
general hybrid systems, see De Santis and Di Benedetto (2016).

Since for mode observable systems it is in particular possible to
recover the state for constant switching signals, each mode nec-
essarily has to be observable. In the context of fault-detection (or
diagnosis) the differentmodes of a switched systemdescribe faulty
and non-faulty variants of the system and a switch represents a
fault. Requiring observability of each mode, in particular of each
faulty mode, might be a too strong assumption. Instead of mode
observability, it would be sufficient to compute the switching
signal and the state if an error occurs. This idea is formalized in the
novel notion of switch observability, (x, σ1)-observability for short.

Before characterizing (x, σ1)-observability, we first have to con-
sider the problem of detecting switches (switching time observ-

✩ This work was partially supported by the German Research Foundation (DFG
grant TR1223/2-1). The material in this paper was not presented at any conference.
This paper was recommended for publication in revised form by Associate Editor
Constantino M. Lagoa under the direction of Editor Richard Middleton.

E-mail addresses: ferdinand.kuesters@itwm.fraunhofer.de (F. Küsters),
trenn@mathematik.uni-kl.de (S. Trenn).

ability or tS-observability). This has been done in Vidal et al. (2003)
in the homogeneous case, but the generalization to inhomoge-
neous systems is not straightforward as the switch might occur
in an interval where the state is zero. This difficulty has been
avoided so far, e.g. in Elhamifar et al. (2009) by assuming mode
observability. We are able to relax this assumption and to fully
characterize tS-observability without any additional assumptions.

Similar to the classical observability of linear systems, we de-
rive characterizations of the observability notions based on rank-
conditions on the Kalman observability matrices. Our results are
summarized in Fig. 1, whereOi andΓi are the Kalman observability
matrix andHankelmatrix ofmode i, respectively. These notions are
defined in Sections 2 and 3; rk(A) denotes the rank of A.

The first column in Fig. 1 gives the result for the homo-
geneous case: The strongest notion considered here is (x, σ )-
observability, which coincides with switching signal observ-
ability (σ -observability). It implies (x, σ1)-observability and tS-
observability. The reverse implications are false in general, we
will show this by some examples. For the inhomogeneous case,
we consider two different setups. First we restrict our attention
to systems with analytic input and with some restriction on the
input matrices (assumption (A2)). Then we drop (A2) and require
only smooth input. Thismakes it necessary to consider equivalence
classes of switching signals, but gives observability notions with
the same characterizations as in the more restrictive setup

Our main contribution is the concept of (strong) (x, σ1)-
observability and its characterization. Also the characterization of
strong switching time observability for inhomogeneous systems is
new.
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Fig. 1. Brief characterizations of the observability notions and their relations. Novel results are indicated by bold boxes.

2. Homogeneous systems

2.1. System class and preliminaries

A switching signal is a piecewise constant, right-continuous
function σ : R → P := {1, . . . ,N}, N ∈ N, with locally
finitely many discontinuities. The discontinuities of σ are also
called switching times:

Tσ := { tS ∈ R | tS is a discontinuity of σ } .

We assume that all switches occur for t > 0, i.e. Tσ ⊂ R>0.
Consider switched linear systems of the form

ẋ = Aσ x, x(0) = x0, (1a)
y = Cσ x, (1b)

with switching signal σ and Ai ∈ Rn×n, Ci ∈ Rp×n for all i ∈ P and
denote its solution and output by x(x0,σ ) and y(x0,σ ), respectively.

Furthermore, let O
[ν]

i be the Kalman observability matrix for
mode i with ν row blocks, i.e.

O
[ν]

i =

[
C⊤

i (CiAi)
⊤

(
CiA2

i

)⊤
· · ·

(
CiAν−1

i

)⊤
]⊤

and let O
[∞]

i be the corresponding infinite Kalman observability
matrix. For observability of unswitched systems, it suffices to con-
sider ν = n. In our setting, the required size increases as we have
to compare the output from different modes.

For any sufficiently smooth function y : R → Rp denote by
y[ν]

: R → Rνp the vector of y and its first ν − 1 derivatives
and by y[∞] the (countably) infinite vector of y and its derivatives.
The same can be done for piecewise-smooth functions,where y(t−)
and y(t+) denote the left-hand side and right-hand side limit at t ,
respectively. Then the output y(x0,σ ) of (1) satisfies for all t ∈ R:

y[ν]

(x0,σ )(t
+) = O

[ν]

σ (t+)x(x0,σ )(t), ν ∈ N ∪ {∞},

y[ν]

(x0,σ )(t
−) = O

[ν]

σ (t−)x(x0,σ )(t), ν ∈ N ∪ {∞}.

2.2. Known results and definitions

Definition 1. The switched system (1) is called

– (x, σ )-observable iff for all (x0, x̃0) ̸= (0, 0) the following
implication holds:

(x0 ̸= x̃0 ∨ σ ̸≡ σ̃ ) ⇒ y(x0,σ ) ̸≡ y(̃x0,σ̃ ), (2)

i.e., iff it is possible to determine simultaneously the state and
current mode from the output;

– σ -observable iff for all (x0, x̃0) ̸= (0, 0)

σ ̸≡ σ̃ ⇒ y(x0,σ ) ̸≡ y(̃x0,σ̃ ), (3)

i.e., iff it is possible to determine the current mode from the
output;

– tS-observable (or switching time observable) iff for all x0 ̸= 0,
σ nonconstant and all x̃0, σ̃ :

Tσ ̸= Tσ̃ ⇒ y(x0,σ ) ̸≡ y(̃x0,σ̃ ),

i.e., iff it is possible to determine the switching times from
the output.

Clearly, (x, σ )-observability implies σ -observability which in
turn implies tS-observability. Furthermore, it seems quite obvious
that it is much harder to determine both the state and the switch-
ing signal compared to just determining the currentmode from the
output. However, this intuition is wrong:

Lemma 2. For the switched system (1) it holds that

(x, σ ) − observability ⇔ σ − observability.

Proof. The implication ‘‘⇒’’ is clear. Now let the system be σ -
observable, but not (x, σ )-observable. This means that there exist
(x0, x̃0) ̸= (0, 0) and σ , σ̃ with

(x0 ̸= x̃0 ∨ σ ̸≡ σ̃ ) ∧ y(x0,σ ) ≡ y(̃x0,σ̃ ).

σ ̸≡ σ̃ would contradict σ -observability. Hence we have σ ≡ σ̃

and x0 ̸= x̃0. This means that y(x0,σ ) ≡ y(̃x0,σ ) and, by linearity,
y(x0−̃x0,σ ) ≡ 0. This contradicts σ -observability, as it implies
y(x0−̃x0,σ ) ≡ 0 ≡ y(0,σ̂ ) for all σ̂ . □

This relation was already implicitly stated in Elhamifar et
al. (2009) for discrete-time systems. Note that observability of
the (continuous) state in each mode is necessary for (x, σ )-
observability (just consider the constant switching signals).
However, state-observability in each mode is not sufficient for
(x, σ )-observability (c.f. Babaali and Pappas, 2005). A trivial coun-
terexample for the latter is a system forwhich eachmode describes
the same observable system.

The next example shows that tS-observability is indeed weaker
than (x, σ )-observability:
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