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a b s t r a c t

The aim of this work is to present a novel sampling-based numerical scheme designed to solve a certain
class of stochastic optimal control problems, utilizing forward and backward stochastic differential
equations (FBSDEs). Bymeans of a nonlinear version of the Feynman–Kac lemma,we obtain a probabilistic
representation of the solution to the nonlinear Hamilton–Jacobi–Bellman equation, expressed in the form
of a system of decoupled FBSDEs. This system of FBSDEs can be solved by employing linear regression
techniques. The proposed framework relaxes someof the restrictive conditions present in recent sampling
based methods within the Linearly Solvable Optimal Control framework, and furthermore addresses
problems in which the time horizon is not prespecified. To enhance the efficiency of the proposed
scheme when treating more complex nonlinear systems, we then derive an iterative algorithm based
on Girsanov’s theorem on the change of measure, which features importance sampling. This scheme is
shown to be capable of learning the optimal control without requiring an initial guess.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

By and large, the problem of obtaining an optimal control is
associated with the solution of a generally nonlinear, second-
order partial differential equation (PDE), known as the Hamilton–
Jacobi–Bellman (HJB) equation. A classification of different
available methods can be achieved based on whether the solution
of this PDE is sought for over the entire domain, or locally around
a nominal system trajectory. In the first case, several attempts
have been made to address the difficulty inherent in solving such
nonlinear PDEs, aswell as the curse of dimensionality, with various
different methods and approaches (Beard, Saridis, & Wen, 1997;
Lasserre, Henrion, Prieur, & Trelat, 2008; McEneaney, 2007) for
deterministic control problems, while a stochastic setting is con-
sidered in Gorodetsky, Karaman, and Marzouk (2015), Horowitz
and Burdick (2014) and Horowitz, Damle, and Burdick (2014).
With only but a few exceptions, most of these methods suffer
from the curse of dimensionality. On the other hand, the latter
category of local methods includes traditional approaches such as
Stochastic Differential Dynamic Programing (S-DDP) (Theodorou,
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Tassa, & Todorov, 2010; Todorov & Li, 2005), which is based on
linearization of the dynamics and a quadratic approximation of the
value function around nominal trajectories, as well as sampling-
based methods.

Sampling-based methods, within stochastic control, rely on a
probabilistic representation of the solution to linear backward
PDEs. This probabilistic representation is addressed by forward
sampling of state trajectories via Stochastic Differential Equations
(SDEs), and the numerical evaluation of expectations. Several re-
sults based on this framework appear in the literature under the
names of Path Integral (PI) Control (Kappen, 2005; Theodorou et al.,
2010), Kullback–Leibler (KL) Control, or Linearly Solvable Optimal
Control (LSOC) (Dvijotham& Todorov, 2012; Todorov, 2009). These
methods have become an exceedingly popular approach to solve
nonlinear stochastic optimal control problems due to their ability
to accommodate scalable iterative schemes. Their fundamental
characteristic is that they rely on the exponential transformation
of the value function; under the exponential transformation, and
by introducing certain restrictions between control authority, cost
and stochasticity, there exists a direct relationship between the
HJB PDE and the backward Chapman–Kolmogorov PDE. The latter
PDE, being linear, permits then the use of the linear Feynman–Kac
lemma (Karatzas & Shreve, 1991), which relates backward linear
PDEs to forward SDEs. Thus, the corresponding optimal control
problem can be solved using forward sampling. While forward
sampling-based methods exhibit several advantages against tradi-
tional methods of stochastic control, such as the mild conditions
on the differentiability of the cost and the stochastic dynamics,
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there are also some key disadvantages which pertain to the nature
of the exponential transformation. In particular, the effect of the
exponential transformation can be identified as themapping of the
value function v(t, x), which has range [0,∞), to the desirability
function ψ(t, x), whose range is (0, 1]. This mapping leads to a
drastic reduction in the ability to distinguish states with high cost
(low desirability) from states with low cost (high desirability). This
issue has been partially addressed with renormalization of the
trajectory cost (Theodorou et al., 2010). Finally,while the necessary
constraint introduced between control authority and stochasticity
can lead to symmetry breaking phenomena and delayed decision
(Kappen, 2005), it is a rather restrictive assumption whenever
applications to engineered systems are considered.

In this work, we present a learning control algorithm which
capitalizes on the innate relationship between certain nonlinear
PDEs and Forward and Backward SDEs, demonstrated by a non-
linear Feynman–Kac lemma. By means of this lemma, we obtain
a probabilistic representation of the solution to the nonlinear HJB
equation, expressed in the form of a system of decoupled FBSDEs.
This systemof FBSDEs canbe solvedby employing linear regression
techniques. To enhance the efficiency of the proposed scheme
when treating more complex nonlinear systems, we then derive
an iterative algorithm based on Girsanov’s theorem on the change
of measure, which features importance sampling for the case of
FBSDEs. A brief summary of some of the contents of this work has
been published by the authors in Exarchos and Theodorou (2016).
The herein proposed framework has also been extended to dif-
ferential games and risk-sensitive control in Exarchos, Theodorou,
and Tsiotras (2016).

2. Problem statement

Let (Ω,F , {Ft}t≥0,P) be a complete, filtered probability space
on which a p-dimensional standard Brownian motion Wt is de-
fined, such that {Ft}t≥0 is the natural filtration of Wt augmented
by allP-null sets. Consider the problemofminimizing the expected
cost defined by the cost functional

J(τ , xτ ; u(·)) = E
[
g(x(T )) +

T∫
τ

q(t, x(t)) +
1
2
u⊤(t)Ru(t)dt

]
, (1)

associated with the stochastic controlled system, which is repre-
sented by the Itô stochastic differential equation (SDE){

dx(t) = f (t, x(t))dt + G(t, x(t))u(t)dt +Σ(t, x(t))dWt ,

t ∈ [τ , T ], x(τ ) = xτ ,
(2)

with T > τ ≥ 0, wherein T is a fixed time of termination (this
requirement will be relaxed in Section 4), x ∈ Rn is the state
vector, u ∈ Rν is the control vector, and R is a ν × ν positive
definite matrix. The functions g : Rn

→ R, q : [0, T ] × Rn
→

R, f : [0, T ] × Rn
→ Rn, G : [0, T ] × Rn

→ Rn×ν , and
Σ : [0, T ] × Rn

→ Rn×p are deterministic, that is, they do not
depend explicitly on ω ∈ Ω , continuous w.r.t. time t (in case there
is explicit dependence), Lipschitz (uniformly in t) with respect to
the state variables, and uniformly bounded w.r.t. time t . These
standard assumptions (Yong & Zhou, 1999) guarantee that the SDE
solution is unique and does not have a finite escape time, similar
to the case of ordinary differential equations, in addition to a well-
defined cost functional (1). Furthermore, the square-integrable
process u : [0, T ] × Ω → U ⊆ Rν is {Ft}t≥0-adapted (also
called progressively measurable), which essentially translates into
the control input being non-anticipating, i.e., relying only on past
and present information. For any given initial condition (τ , xτ ), we
wish to minimize (1) under all admissible functions. The solution
is obtained by solving the associated Hamilton–Jacobi–Bellman
(HJB) equation for the Value function. Specifically, by applying the

stochastic version of Bellman’s principle of optimality, it is shown
(Fleming & Soner, 2006; Yong & Zhou, 1999) that if the Value
function is in C1,2([0, T ]×Rn), then it is a solution to the following
terminal value problem of a second-order partial differential equa-
tion, known as the HJB equation, which, for the problem at hand,
and suppressing function arguments for notational compactness,
takes the form⎧⎨⎩ vt + inf

u∈U

{
1
2
tr(vxxΣΣ⊤) + v⊤

x (f + Gu) + q +
1
2
u⊤Ru

}
= 0, (t, x) ∈ [0, T ) × Rn, v(T , x) = g(x), x ∈ Rn

(3)

where vx and vxx denote the gradient and the Hessian of v, respec-
tively. The term inside the brackets is the Hamiltonian. Note that
this result can be extended to include cases where the Value func-
tion does not satisfy the smoothness condition. Then, if one also
considers viscosity solutions of (3), the Value function is proven to
be a viscosity solution of (3). Furthermore, the viscosity solution is
equal to the classical solution, if a classical solution exists. For the
chosen form of the cost integrand, and assuming that the optimal
control lies in the interior of U , we may carry out the infimum
operation by taking the gradient of the Hamiltonian with respect
to u and setting it equal to zero, thus obtaining

u∗(t, x) = −R−1G⊤(t, x)vx(t, x), (t, x) ∈ [0, T ] × Rn. (4)

Inserting the above expression back into the original HJB equation
and suppressing function arguments for notational brevity, we
obtain the equivalent characterization⎧⎨⎩ vt +

1
2
tr(vxxΣΣ⊤) + v⊤

x f + q −
1
2
v⊤

x GR−1G⊤vx = 0,

v(T , x) = g(x), x ∈ Rn.

(5)

3. A Feynman–Kac type representation through FBSDEs

There is an innate relation between stochastic differential equa-
tions and second-order partial differential equations (PDEs) of
parabolic or elliptic type. Specifically, solutions to a certain class
of nonlinear PDEs can be represented by solutions to forward–
backward stochastic differential equations (FBSDEs), in the same
spirit as demonstrated by the well-known Feynman–Kac formulas
(Karatzas & Shreve, 1991) for linear PDEs. In what follows, we shall
briefly state the definitions of forward and backward processes,
and then proceed to link their solutionwith the solution of PDEs, in
light of a nonlinear Feynman–Kac formula. As a forward processwe
shall define the square-integrable, {Fs}s≥0-adapted process X(·)1 ,
which, for any given initial condition (t, x) ∈ [0, T ] × Rn, satisfies
the Itô FSDE{
dXs = b(s, Xs)ds +Σ(s, Xs)dWs, s ∈ [t, T ],

Xt = x. (6)

The forward process (6) is also called the state process in the
literature. We shall denote the solution to the forward SDE (6) as
X t,x
s , wherein (t, x) are the initial condition parameters. In contrast

to the forward process, the associated backward process is the
square-integrable, {Fs}s≥0-adapted pair (Y (·), Z(·)) defined via a
BSDE satisfying a terminal condition{
dYs = −h(s, X t,x

s , Ys, Zs)ds + Z⊤

s dWs s ∈ [t, T ],

YT = g(XT ).
(7)

The function h(·) is called generator or driver. The solution is im-
plicitly defined by the initial condition parameters (t, x) of the
FSDE since it obeys the terminal condition g(X t,x

T ), and thus we
will similarly use the notation Y t,x

s and Z t,x
s to denote the solution

1 While X is a function of s and ω, we shall use Xs for notational brevity.
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