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a b s t r a c t

Parameter convergence is desirable in adaptive control as it enhances the overall stability and robustness
properties of the closed-loop system. However, a stringent condition termed persistent excitation (PE)
must be satisfied to guarantee parameter convergence in the conventional adaptive control. This paper
provides the first result of parameter convergence without the PE condition for adaptive control of a
general class of robotic systems. More specifically, we develop a composite learning robot control (CLRC)
strategy to achieve fast and accurate parameter estimation under a condition termed interval excitation
(IE) which is much weaker than the PE condition. In the composite learning, a time-interval integral of a
filtered regressor is utilized to construct a prediction error such that the time derivation of plant states
is not necessary, and both the prediction error and a filtered tracking error are employed to update the
parameter estimate. The closed-loop system is proven to be globally exponentially stable under the IE
condition. Robustness against external disturbances of the CLRC is analyzed in the Lyapunov sense. An
illustrative example shows the effectiveness and superiority of the proposed approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive control is desirable in robotic systems because of the
uncertain and time-varying properties of robot parameters (Slo-
tine & Li, 1991). Generally, adaptive control has two different
schemes, namely an indirect scheme where plant parameters are
estimated online for the calculation of controller parameters, and
a direct scheme where the plant model is parameterized in terms
of controller parameters that are estimated directly without plant
parameter estimation (Ioannou & Sun, 1996). Composite adap-
tive control is an integrated direct and indirect adaptive control
strategy which feeds back both tracking errors and prediction
errors to update parameter estimates (Pan, Sun, & Yu, 2016). The
advantages of the composite adaptation include the following:
(1) the composite error feedback is useful for speeding up con-
vergence of both tracking errors and parameter estimation errors;
(2) due to the smoothness of control responses, smaller tracking
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errors and faster parameter estimation can be achieved via higher
adaptation gains without exciting high-frequency unmodeled dy-
namics (Slotine & Li, 1991). After originally proposed by Slotine
and Li (1989), composite adaptive robot control (CARC) has at-
tracted great attention andmany results can be found in the litera-
ture (Barambones & Etxebarria, 2001, 2002; Ciliz, 2005, 2006; Kim
& Ahn, 2013; Pan, Sun, Pan, & Yu, 2016; Patre, MacKunis, Johnson,
& Dixon, 2010; Yu & Lloyd, 1997; Yuan, 1996; Yuan & Stepanenko,
1993; Zergeroglu, Dixon, Haste, & Dawson, 1999). However, like
the classical adaptive control, CARC does not guarantee parameter
convergence, i.e., accurate parameter estimation, unless a condi-
tion termed persistent excitation (PE) is fulfilled (Slotine & Li, 1991).
It iswell known that the PE condition is very stringent and often in-
feasible in practice (Farrell, 1997). Even when PE exists, the rate of
parameter convergence in adaptive control highly depends on the
PE strength generally resulting in a slow convergence speed (Hsu
& Costa, 1987).

The ability to learn is one of the fundamental features of au-
tonomous intelligent behavior which is reflected by parameter
convergence in adaptive control systems (Antsaklis, 1995). The
benefits brought by parameter convergence include accurate on-
line identification, superior trajectory tracking, and robust adap-
tation without parameter drift (Lin & Kanellakopoulos, 1998). A
desired compensation adaptive robot control (DCARC) approach,
which includes a linear feedback term, a square damping term, and
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an adaptive feedforward compensator, was proposed in Sadegh
and Horowitz (1990), where the parameter estimate is updated by
a least-squares algorithmwith forgetting, and exponential stability
of the closed-loop system is guaranteed by a semi-PE condition. A
sufficient condition to satisfy semi-PE in DCARC is that the regres-
sor is periodic (Sadegh & Horowitz, 1990). Although the semi-PE
condition is relaxed compared with the original PE condition, it is
still stringent for practical applications.

This paper proposes a novel composite learning robot control
(CLRC) strategy to achieve fast and accurate parameter estimation
without the PE condition. The difference between the composite
adaptation and the composite learning lies in the exploitation
of online data. In the composite adaptation, only instantaneous
data are exploited to update parameter estimates, whereas in the
composite learning, online historical data (OHD) together with
instantaneous data are exploited to update parameter estimates.
The design procedure of the proposed approach is given as follows:
First, the classical CARC law in Slotine and Li (1989) is presented
to facilitate control synthesis; second, a novel prediction error is
constructed to utilize OHD; third, the prediction error is applied
together with a filtered tracking error to update the parameter
estimate; finally, global exponential stability of the closed-loop
system is established under a condition termed interval excitation
(IE) which ismuchweaker than the PE condition. The significance of
this study is that it provides the first result of parameter convergence
without the PE condition for adaptive robot control. The price of
implementing the proposed CLRC is that extra computational time
is required to calculate the prediction error and extra memory is
required to store OHD.

In the remainder of this article, Section 2 formulates the control
problem, Section 3 presents the CLRC design, Section 4 provides
illustrative results, and Section 5 draws conclusions. Throughout
this article, R, R+, Rn and Rm×n denote the spaces of real numbers,
positive real numbers, real n-vectors and real m × n-matrices,
respectively, L2 and L∞ denote the spaces of square-integrable
and bounded signals, respectively, λmin(A) and λmax(A) denote the
minimal and maximal eigenvalues of A, respectively, min{·} and
max{·} denote the minimum and maximum operators, respec-
tively, ∥x∥ denotes the Euclidean norm of x, diag(·) is a diagonal
matrix, and Ωc := {x|∥x∥ ≤ c} is the ball of radius c , where x ∈

Rn, A ∈ Rn×n, c ∈ R+, and n and m are positive integers. For
the sake of brevity, in the subsequent sections, the arguments of a
function may be omitted while the context is sufficiently explicit.

2. Problem formulation

Consider a class of n-link robotic systems described by an Euler–
Lagrange formulation (Kelly, Santibanez, & Loria, 2005; Khalil,
2015; Spong, Hutchinson, & Vidyasagar, 2006):

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + G(q) = τ (1)

in which q(t) = [q1(t), q2(t), . . . , qn(t)]T ∈ Rn is a joint angular
position, M(q) ∈ Rn×n is an inertia matrix, C(q, q̇) ∈ Rn×n is a
centripetal-Coriolis matrix, Dq̇ ∈ Rn is a viscous friction torque,
G(q) ∈ Rn is a gravitational torque, τ(t) ∈ Rn is a control torque,
and n is the number of links. To facilitate presentation, let

H(q, q̇, v, v̇) := G(q) + Dq̇ + C(q, q̇)v + M(q)v̇ (2)

with v ∈ Rn being an auxiliary variable. In this study, it is assumed
that q and q̇ are measurable, and the following properties of the
system (1) with revolute joints are available (Spong et al., 2006).

Property 1. M(q) is symmetric positive-definite, and satisfies m0I ≤

M(q) ≤ m̄I, where m0, m̄ ∈ R+ are some constants.

Property 2. Ṁ(q)−2C(q, q̇) is skew-symmetric such that ξT (Ṁ(q)−
2C(q, q̇))ξ = 0, ∀q, q̇, ξ ∈ Rn.

Property 3. H(q, q̇, v, v̇) can be linearly parameterized as follows:

H(q, q̇, v, v̇) = ΦT (q, q̇, v, v̇)W (3)

where Φ : R4n
↦→ RN×n is a smooth regressor, W ∈ Ωcw ⊂ RN is an

unknown constant parameter, cw ∈ R+ is a known constant, and N is
the dimension number of W.

Property 2 implies that the internal forces do no work, which
is applicable for any kind of arm-type robots. The following defini-
tions are also introduced to facilitate control analysis and synthe-
sis (Pan, Zhang, & Yu, 2016).

Definition1.Abounded signalΦ(t) ∈ RN×n is of IE over [Te−τd, Te]
if ∃Te, τd, σ ∈ R+ such that

∫ Te
Te−τd

Φ(τ )ΦT (τ )dτ ≥ σ I .

Definition 2. A bounded signal Φ(t) ∈ RN×n is of PE if ∃σ , τd ∈ R+

such that
∫ t
t−τd

Φ(τ )ΦT (τ )dτ ≥ σ I , ∀t ≥ 0.

Let qd(t) = [qd1(t), qd2(t), . . . , qdn(t)]T ∈ Rn denote a desired
output satisfying qd, q̇d, q̈d ∈ L∞ and Ŵ (t) ∈ RN be an estimate of
W . Define a position tracking error e(t) := qd(t) − q(t), a filtered
tracking error ef (t) := ė(t) + Λe(t) and a parameter estimation
error W̃ (t) := W − Ŵ (t), where Λ ∈ Rn×n is a positive-definite
diagonal matrix. Our objective is to develop a proper control strat-
egy for the robotic system (1) such that exponential convergence
of both e and W̃ is guaranteed under certain conditions.

Remark 1. The robotic system (1) can be rewritten as follows:

q̈ = M−1(q)
(
−C(q, q̇)q̇ − Dq̇ − G(q)

)
+ M−1(q)τ(t)

where M−1(q) is a control gain function. Our previous composite
learning approaches of Pan, Sun, Liu, and Yu (2017), Pan and Yu
(2016) and Pan, Zhang et al. (2016) are only valid for the case
withM−1 being a known constant, and it is not straightforward to
extend these approaches to the case with an unknown functional
M−1(q). Additionally, in the approaches of Pan et al. (2017) and
Pan and Yu (2016), the joint acceleration q̈ must be estimated
for the calculation of prediction errors, which inevitably increases
computational cost and decreases parameter estimation accuracy.

3. Composite learning control design

3.1. Closed-loop robot dynamics

Differentiating ef with respect to time t and multiplying both
sides of the resultant equality byM(q), we obtain

M(q)ėf = M(q)(q̈d + Λė) − M(q)q̈.

Noting the expression ofM(q)q̈ from (1), we get

M(q)ėf = M(q)v̇ + C(q, q̇)q̇ + Dq̇ + G(q) − τ
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