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a b s t r a c t

This paper is concerned with strong delay-independent stability of linear time-invariant (LTI) systems
with a single time-delay. Stability analysis of linear delay-systems is complicated by the need to locate
the roots of a transcendental characteristic equation. In this paper we propose a convex necessary and
sufficient condition for strong delay-independent stability. This result mainly follows from the Kronecker
sum properties and the Kalman–Yakubovich–Popov lemma, which allows us to present themain result in
terms of a single linearmatrix inequality (LMI) feasibility test. The result is illustrated by simple numerical
examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Existing methods for the stability analysis of time-delay sys-
tems in the literature often fall into two categories: delay-
independent stability and delay-dependent stability, depending on
whether or not stability has to be maintained for all positive delay
values. Recent results and surveys of the literature can be found
in Briat (2015), Fridman (2014), Gu, Kharitonov, and Chen (2003),
Kharitonov (1999) and Niculescu (2001).

The present paper focuses on delay-independent stability. The
goal is to characterize whether the origin of a linear state-delayed
system of the form

ẋ(t) = Ax(t) + Bx(t − τ ), (1)

where x(t) ∈ Rn, A, B ∈ Rn×n, is an asymptotically stable equilib-
rium point for all possible values of the delay parameter τ ≥ 0, and
the initial condition is x(t) = ϕ(t), ϕ : [−τ , 0] → Rn. It is known
that for a given delay, τ , the delayed system in (1) is asymptotically
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stable if and only if all roots of the transcendental function

∆(s, e−sτ ) := det(sI − A − Be−sτ ) (2)

lie in the open left half of the complex plane.
One can generally find in the literature two notions of delay-

independent stability for linear delay-systems, both related to the
following polynomial in two variables:

∆(s, z) := det(sI − A − Bz). (3)

The first and less restrictive is the delay-independent stability
characterization:

Definition 1. System (1) is delay-independent stable if∆(s, z) ̸= 0
with z = e−sτ , ∀s ∈ C+, and τ ≥ 0.

In this definition, C+ denotes the closed right half plane of the
complex plane. A slightly more restrictive condition is the strong
notion of delay-independent stability.

Definition 2. System (1) is strongly delay-independent stable if
∆(s, z) ̸= 0, ∀s ∈ C+, and z ∈ D.

The symbol D denotes the closed unit disc. Comparing the
above definitions, strong delay-independent stability is defined by
regarding s and e−τ s as completely independent variables. For this
reason, strong delay-independent stability is slightly stricter than
the former. In fact, the only difference is at the origin, i.e. s = 0,
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where z = e−τ s
= 1 ⊂ D. On the other hand, strong delay-

independent stability is often more robust against perturbations
in the matrices A and B (Bliman, 2002).

Delay-independent stability has been studied in the literature
using a myriad of techniques. The interested reader is referred
to Bliman (2002), Chen and Latchman (1995), Fridman (2014), Gu
et al. (2003), He, Wang, Lin, and Wu (2005), Kharitonov (1999),
Li, Gao, and Gu (2016), Niculescu (2001) and Souza, de Oliveira,
and Palhares (2009) for more details. Most delay-independent
stability conditions in the literature are only sufficient. That is,
they may be able to verify stability for certain systems but fail for
others (see, for instance, Gu et al. (2003, Section 3.5)). Their main
advantage is the generally lower computational cost.Many of these
sufficient conditions can be formulated in terms of linear matrix
inequalities (LMIs) and, from there, be generalized to cope with
problems of filters and controller design (de Oliveira & Geromel,
2004; de Souza, Palhares, & Dias Peres, 2001).

Necessary and sufficient delay-independent conditions exist
but often involve difficult computations. In Bliman (2002), a
method was proposed for verifying strong delay-independent sta-
bility based on a family of LMIs of increasing dimensions. The LMI
conditions approach necessity for a large enoughdimension. Awell
known necessary and sufficient delay-independent condition in
the case of a single delay is the frequency-sweeping test:

Lemma 1 (Chen and Latchman, 1995, Theorem 3.1). The time-delay
system in (1) is delay-independent stable if and only if

(i) A is Hurwitz;
(ii) ρ

(
(jωI − A)−1B

)
< 1, ∀ ω > 0;

(iii) either

(a) ρ(A−1B) < 1 or
(b) ρ(A−1B) = 1 and det(A + B) ̸= 0.

Furthermore, if (ii) also holds for ω = 0 then the system in (1) is
strongly delay-independent stable.

In the above lemma, ρ(X) denotes the spectral radius of the
square matrix X . The infinite-dimensional condition in Lemma 1
cannot be directly translated into a finite dimensional convex
optimization problem. The main obstacle is the evaluation of
the spectral radius on a range of frequencies. It can be, how-
ever, evaluated graphically, by plotting ρ

(
(jωI − A)−1B

)
on a fine

grid. This approach may lack accuracy in certain cases and also
does not generalize to problems of filter and controller design.
See Chesi and Middleton (2014) for some recent results in this
direction and Chen and Latchman (1995) for further discussions
on the notions of delay-independent stability in the context of
the frequency-sweeping test. Recently, in Li et al. (2016), a new
technique was proposed that overcome the need for a fine grid
in a strong version of the frequency-sweeping test by discretizing
the frequency domain into several sub-intervals and employing
a piecewise constant Lyapunov matrix to analyze the frequency-
dependent stability condition. This approach leads to an exact
LMI characterization of strong delay-independent stability as the
number of frequency points is increased. The main drawback is
that the number of required LMI tests increaseswith the number of
frequency points. The method also requires an iterative procedure
for refining the domains.

In the present paper we show how to construct a necessary
and sufficient strong delay-independent stability condition based
on a single LMI test. In order to construct the main result we first
employ a property of the Kronecker sum in order to translate the
stability analysis problem into a problem of detecting a singularity
in a certain frequency-dependent matrix. Then, we show how
to replace the frequency dependence on the resulting condition
by a matrix valued decision variable. The main technical result

used then is the well-known Kalman–Yakubovich–Popov (KYP)
lemma (Rantzer, 1996), which converts an infinite dimensional
frequencydomain inequality into a finite dimensional LMI. TheKYP
lemma is stated next:

Lemma 2 (KYP Lemma). Given matrices A#, B#, and Q of compatible
dimensions, the infinite dimensional frequency domain inequality[
(ejθ I − A#)−1B#

I

]∗

Q
[
(ejθ I − A#)−1B#

I

]
≻ 0 (4)

holds for all θ ∈ R if and only if[
A# B#
I 0

]T [
−P 0
0 P

][
A# B#
I 0

]
+ Q ≻ 0 (5)

holds for some symmetric matrix P.

The resulting LMI, which will be presented in Theorem 1 in
Section 2, can be efficiently solved numerically using polynomial-
time algorithms for convex optimization with constraints defined
by LMIs (Gahinet, Nemirovski, Laub, & Chilali, 1995; Toh, Todd, &
Tütüncü, 1999).

The main advantage of the method proposed in the present pa-
per as compared, for instance with those from Bliman (2002) and
Li et al. (2016), is the need to test only a single finite dimensional
LMI. The applicability and effectiveness of the main result will be
illustrated by examples in Section 3.

Notation throughout the paper is standard. The symbolMT (M∗)
denotes the transpose (conjugate) of matrix M . If X is square and
Hermitian then X ≻ 0 (X ≺ 0) indicates that X is positive
(negative) definite. ρ(X) denotes the spectral radius of the square
matrix X . The notations ⊗ and ⊕ denote the Kronecker product
and Kronecker sum, respectively.

2. The main results

We start with the following technical result.

Lemma 3. Let F (θ ) = A + Be−jθ . The following statements are
equivalent:

(i) System (1) is strongly delay-independent stable;
(ii) Matrix F (θ ) is Hurwitz for all θ ∈ [0, 2π ];
(iii) Matrix F (0) = A + B is Hurwitz and

det
(
F (θ ) ⊕ F∗(θ )

)
̸= 0

for all θ ∈ [0, 2π ].

Proof. The proof of equivalence between items (i) and (ii) can be
found in Kamen (1982), see also Li et al. (2016, Lemma 1) and
references therein. The equivalence between (ii) ⇔ (iii) is shown
next.
(ii) ⇒ (iii): First recall that the eigenvalues of the Kronecker
sum of the matrices F (θ ) and F∗(θ ) are all possible pairwise sums
of the eigenvalues of F (θ ) and F∗(θ ) (see e.g. Niculescu (2001,
Proposition C.2), Bernstein (2009, Proposition 7.2.3), and Horn &
Johnson (1994, Theorem 4.4.5)). Therefore, if F (θ ) is Hurwitz, then
F (θ ) ⊕ F∗(θ ) is also Hurwitz and det

(
F (θ ) ⊕ F∗(θ )

)
̸= 0.

(ii) ⇐ (iii): If (iii) holds, then A+ B is Hurwitz, that is (A+ Be−jθ ) is
Hurwitz for θ = 0. Because of the continuity of the eigenvalues of
(A+Be−jθ ) with respect to θ and the property of the Kronecker sum
previously discussed, thematrix (A+Be−jθ ) remains Hurwitz for all
θ ∈ [0, 2π ]. This is true since for the real part of an eigenvalue of
F (θ ) to become non-negative, an eigenvalue of F (θ )⊕ F∗(θ ) should
first become zero. □

The following auxiliary result is needed to prove the main
result.
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