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a b s t r a c t

This paper deals with the problem of inverting a nonlinear map. The proposed solution consists in a
nonlinear state observer, which mimics a Newton-like algorithm, that allows to determine the inverse of
a given diffeomorphism in finite time. The results are illustrated by application to the inverse kinematics
of a three DOF planar manipulator.
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1. Introduction

The problem of determining the inverse of a nonlinear map is a
central issue in many fields as, e.g., robotics and observer design.
The inverse of the observability map can be used to design ob-
servers able to estimate the state of a nonlinear system (Gauthier &
Kupka, 2001; Menini, Possieri, & Tornambe, 2016), whereas the in-
verse of the direct kinematics of a robotic manipulator can be used
to define its position in terms of the joint coordinates (Hartenberg
& Denavit, 1955). In some cases, the exact inverse of a nonlinear
map can be computed (Sturmfels, 2002), but its closed-form may
be cumbersome (Goldenberg, Benhabib, & Fenton, 1985).

In Nicosia, Tornambe, and Valigi (1991b), the problem of in-
verting a nonlinear map has been reduced to the construction of
a nonlinear observer, whereas in Nicosia, Tornambe, and Valigi
(1992) it has been shown that the Newton algorithm can be inter-
preted as a state observer. Recently, in Blanchini, Fenu, Giordano,
and Pellegrino (2017), a method is given to steer to a desired value
the output of an unknown function, whose Jacobian takes values
in a known polytope. In this work, an approach similar to the one
given in Nicosia et al. (1992) (i.e., a state observer) is used to design
a technique able to invert a nonlinear map. Differently from the
approaches given in Blanchini et al. (2017), Nicosia, Tornambe,
and Valigi (1991a), Nicosia et al. (1991b, 1992); Nicosia, Tornambe,
and Valigi (1994), the proposed observer converges in finite time
to the inverse, thus improving the performances of the previously
existing procedures. The effectiveness of the method is illustrated
by computing the inverse kinematics of a robotic manipulator.

✩ Thematerial in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor A. Pedro Aguiar
under the direction of Editor André L. Tits.
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2. A Newton-like algorithm for the inverse of a nonlinear map
that converges in finite time

Let R, R⩾0, R>0, and Z denote the set of real, nonnegative real,
positive real, and integer numbers. Let σ (A) denote the spectrum
of the square matrix A. Letting v = [v1 · · · vn]

⊤
∈ Rn, ∥v∥j :=

(
∑n

i=1|vi|
j)

1
j is the j-norm of v. Letting A, B be suitable subsets of

Rn, let

h : A → B,

be a diffeomorphism, i.e., a smooth, bijective mapping whose in-
verse is smooth (Appendix A.3 of Isidori, 2013). For any positive
and sufficiently small ε > 0, define

Ωε := {ξ ∈ Rn
: ∥ξ∥2 < ε}, (1a)

Aε := {ξ ∈ A : ξ̂ := ξ − ξ̃ ∈ A, ∀ξ̃ ∈ Ωε} (1b)

and consider the following problem.

Problem 1. Let ε > 0 be given, let Aε and Ωε be defined as in
(1), let Aε be nonempty, let the mapping x : R⩾0 → Aε be C0 and
piecewise C1, and let y(t) = h(x(t)) for all times t ∈ R, t > 0.
Letting ẏ(t) =

d
dt y(t), find a mapping f : Rn

× Rn
× Rn

→ Rn such
that each solution of

˙̂x = f (x̂, y, ẏ), (2)

with x̃(0) := x(0) − x̂(0) ∈ Ωε , is such that x̃(t) := x(t) − x̂(t)
converges to 0 in finite time, i.e., there exists T ∈ R, T ⩾ 0, such that
x(t) − x̂(t) = 0, for all t > T .

Remark 1. The system (2) considered in Problem 1 takes as
inputs the output of the map h(x(t)) and its time derivative. If
the latter signal cannot be directly measured, it can be however
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estimated exactly and in finite time through techniques taken from
the literature, as, for instance, the one proposed in Levant (1998).

The solution to Problem 1 proposed in this work consists in a
state observer (a modified version of the Newton algorithm) that
allows to achieve finite-time convergence to zero of the estimation
error. Namely, let

J(x) :=
∂

∂x
h(x),

which has full rank for all x ∈ A (Appendix A.3 of Isidori, 2013).
Hence, consider the system

˙̂x = J−1(x̂)(ẏ + k ∥ỹ∥α
2 sign(ỹ)), (3)

where k > 0, α > 0, α < 1, ỹ = y − h(x̂), and sign(·) denotes
the entry-wise sign operator. Due to the discontinuity of (3), in the
following, solutions to system (3) are understood in the Filippov
sense (Filippov, 1988).

The following theorem states that system (3) is a solution to
Problem 1.

Theorem 1. Let the assumptions of Problem 1 hold and let x̂(0) be
such that x̃(0) ∈ Ωε . Then, letting x̂(t) be the solution to system (3),
there exists T ∈ R, T ⩾ 0, such that x̃(t) = x(t) − x̂(t) = 0 for all
times t ∈ R, t > T .

Proof. Consider the function

V =
1
2 ỹ

⊤ỹ =
1
2∥ỹ∥

2
2, (4)

that is positive definite with respect to x̃ := x − x̂, provided that
x ∈ Aε and x̃ ∈ Ωε . In fact, define the function of the scalar
θ , parametric with respect to x ∈ Aε and x̃ ∈ Ωε , w(θ ) :=

h(x− θ x̃). By Theorem 5.19 of Rudin (1964) applied tow(θ ), that is
a differentiable function of θ in [0, 1], there exists θ̄ ∈ [0, 1] such
that

∥ỹ∥2 = ∥w(1) − w(0)∥2 ⩽ ∥J(x − θ̄ x̃)∥2∥x̃∥2.

Hence, x̃ = 0 implies V = 0. In order to prove the positive
definiteness of V with respect to x̃, assume, by contradiction, that
there exists x ∈ Aε and x̃ ∈ Ωε , x̃ ̸= 0, such that V = 0. Since
V = 0 if and only if ỹ = 0, this implies that h(x) = h(x − x̃) for
some x̃ ̸= 0, leading to a contradiction because, by assumption, h
is a diffeomorphism from A to B.

By computing the time derivatives of V along the trajectories of
system (3), one obtains that

V̇ = ỹ⊤ ˙̃y = ỹ⊤

(
ẏ −

∂h(x̂)
∂x

˙̂x
)

= ỹ⊤(ẏ − J(x̂)J−1(x̂)(ẏ + k ∥ỹ∥α
2 sign(ỹ)))

= −k ỹ⊤sign(ỹ)∥ỹ∥α
2 = −k∥ỹ∥1∥ỹ∥α

2 ,

for all x ∈ Aε and x̃ ∈ Ωε . Hence, since ∥ · ∥1 ⩾ ∥ · ∥2,

V̇ ⩽ −k∥ỹ∥α+1
2 = −k V

α+1
2 . (5)

Therefore, if x̂(0) is such that x̃(0) ∈ Ωε , by (5) and Bhat and
Bernstein (2000), there exists a time T ∈ R, T > 0, such that
V (t) = 0 for all times t ∈ R, t ⩾ T , and hence ỹ(t) = 0 for all
t ⩾ T . Thus, since V is positive definite with respect to x̃, one has
that x̃(t) = 0 for all t ⩾ T . □

The inequality given in (5) provides an upper bound on the con-
vergence of the function V to zero that depends on the design pa-
rameters k and α of (3). Namely, letting T ⋆

=
1

k (1−α)2
α+1
2 ∥ỹ(0)∥1−α

2 ,
by (5), one has that

V (t) ⩽

{
(
1
2
(α − 1)kt + 2

α−1
2 ∥ỹ(0)∥1−α

2 )
2

1−α , if t ⩽ T ⋆,

0, if t > T ⋆,

for all t ∈ R⩾0. Thus, letting δ := supx̃∈Ωε , x∈Aε
∥h(x)−h(x− x̃)∥2 be

the maximum admissible initial error in ỹ the finite convergence
time T satisfies

T ⩽
2

α+1
2 δ1−α

k (1 − α)
. (6)

Assume now that just estimates Ĵ and ˆ̇y of J and ẏ are known
and consider the following system

˙̂x = Ĵ−1(x̂)( ˆ̇y + k ∥ỹ∥α
2 sign(ỹ)), (7)

that is system (3) where J and ẏ have been substituted with their
estimates Ĵ and ˆ̇y, respectively. The following theorem proves the
robustness of the proposed solution to Problem 1 with respect to
such uncertainties.

Theorem 2. Let the positions of Theorem 1 hold and, letting G(x) :=

J(x)Ĵ−1(x), assume, additionally, that

(i) 0 < infx∈A|det(J(x))| and supx∈A∥J(x)∥2 < ∞;

(ii) ∃µ such that supx∈A∥ẏ(t) − G(x) ˆ̇y(t)∥2 <µ, ∀t > 0;
(iii) ∃λ ∈ R>0 such that (h(x) − h(x̂))⊤G(x̂)sign(h(x) − h(x̂)) ⩾

λ∥h(x) − h(x̂)∥2 for all x ∈ Ae, x̃ ∈ Ωe.

Thus, for each d ∈ R>0, there exist k ∈ R>0 and T ∈ R⩾0 such
that, letting x̂(t) be the solution to system (7), one has ∥x̃(t)∥ :=

∥x(t) − x̂(t)∥ ⩽ d for all times t > T .

Proof. Consider the function V given in (4). By computing the time
derivative of V along the trajectories of system (7) one has that, by
items (ii) and (iii),

V̇ = ỹ⊤ẏ − ỹ⊤G(x̂) ˆ̇y − k∥ỹ∥α
2 ỹ

⊤G(x̂)sign(ỹ)
⩽ µ∥ỹ∥2 − kλ∥ỹ∥α+1

2 ⩽ ∥ỹ∥2(µ − kλ∥ỹ∥α
2 ).

Therefore, if ∥ỹ∥α
2 >

µ

λk , then V̇ is negative, thus implying that there
exists T ∈ R⩾0 such that ∥ỹ(t)∥2 ⩽ ( µ

λk )
1/α for all t > T . Since, by

Lemma (L4) of Nicosia et al. (1991b), if (i) holds, then there exists
γ ∈ R⩾0 such that ∥x̃∥2 < γ ∥ỹ∥2 for any x̃ ∈ Ωe and x ∈ Ae, if

k ⩾
γ µ

λ dα
,

then ∃T ∈ R⩾0 such that ∥x̃(t)∥ ⩽ d for all t > T . □

Differently from the observer (3), system (7) provides a finite-
time ‘‘practical’’ estimate of x(t), i.e., the estimation error is not
zero for all t > T , but it can be made arbitrarily small. Note that
items (i) and (ii) hold ifA is compact, there is no singular point for
h inA, and supx∈A{max σ (G(x))}, ∥ẏ(t)∥2, ∥ˆ̇y(t)∥2 are bounded. The
following proposition states that item (iii) holds if A is compact
and Ĵ(x) ≃ J(x) so that G(x) ≃ I .

Proposition 1. If ∥J−1(x)∥2 ⩽ κ1 < ∞, ∥Ĵ−1(x)∥2 ⩽ κ2 < ∞,
and ∥J(x) − Ĵ(x)∥2 < (

√
n κ1κ2)−1 for all x ∈ A, then item (iii) of

Theorem 2 holds.

Proof. Let Z(x) := J−1(x) − Ĵ−1(x). One has that

ỹ⊤G(x)sign(ỹ) = ỹ⊤J(x)(J−1(x) − Z(x))sign(ỹ)
= ∥ỹ∥1 − ỹ⊤Z(x)sign(ỹ) ⩾ ∥ỹ∥2 −

√
n∥Z(x)∥2∥ỹ∥2.

Therefore, if ∥Z(x)∥2 < n−
1
2 , item (iii) of Theorem 2 holds with

λ = 1 −
√
n∥Z(x)∥2. The proof follows by the fact that ∥Z(x)∥2 =

∥J−1(x)(Ĵ(x) − J(x))Ĵ−1(x)∥2 ⩽ ∥J−1(x)∥2∥J(x) − Ĵ(x)∥2∥Ĵ−1(x)∥2 <

n−
1
2 . □
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