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a b s t r a c t

Control barrier functions (CBFs) have been used as an effective tool for designing a family of controls that
ensures the forward invariance of a set. When multiple CBFs are present, it is important that the set of
controls satisfying all the barrier conditions is non-empty. In this paper, we investigate such a control-
sharing property for multiple CBFs and provide sufficient and necessary conditions for the property to
hold. Based on that, we study the tracking control design problem of an input–output linearizable system
with multiple time-varying output constraints, where the output constraints are encoded as CBFs and
the barrier conditions are expressed as hard constraints in a quadratic program (QP) whose feasibility is
guaranteed by the control-sharing property of the CBFs. With the controller generated from the QP, the
output constraints are always satisfied and the tracking objective is achieved when it is not conflicting
with the constraints. The effectiveness of our control design method is illustrated by two examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

First introduced in optimization, barrier functions (also known
as barrier certificates) are now used as an important tool for the
verification of nonlinear systems and hybrid systems (Prajna &
Jadbabaie, 2004; Prajna, Jadbabaie, & Pappas, 2007; Wisniewski &
Sloth, 2016). Using Lyapunov-like conditions, barrier functions can
provably establish safety or eventuality properties of dynamical
systemswithout the difficult task of computing the system’s reach-
able set. The extension of barrier functions to a control system
results in control barrier functions (CBFs), which, in some sense,
parallels the extension of Lyapunov functions to Control Lyapunov
function (CLFs) . A family of controls ensuring the forward invari-
ance of a set is established by the barrier condition, which can be
used for the control synthesis of systems with state constraints or
safety specifications (Ames, Grizzle, & Tabuada, 2014; Panagou,
Stipanović, & Voulgaris, 2016; Tee, Ge, & Tay, 2009; Wieland &
Allgöwer, 2007).

Depending on the values of a CBF on the associated set, two
types of (control) barrier functions are commonly used in litera-
ture: one goes to infinity on the set boundary (Ames et al., 2014;
Jin & Xu, 2013; Tee et al., 2009), while the other vanishes on the set
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boundary (Romdlony & Jayawardhana, 2016; Wolff & Buss, 2005;
Xu, Tabuada, Ames, &Grizzle, 2015). The former type of CBFs is only
defined inside the given set whose boundary cannot be crossed;
for example, the reciprocal CBF in Ames et al. (2014), the barrier
Lyapunov function (BLF) in Ngo, Mahony, and Jiang (2005) and
Tee et al. (2009), and several of its extensions such as the tan-
type BLF (Jin, 2017) and the integral BLF (He, Sun, & Ge, 2015).
The latter type of CBFs is defined in the whole state space, but
the barrier condition ensures that the trajectory of the system will
stay inside the set once starting there. Related works belonging to
this type include the invariance control (Kimmel & Hirche, 2015;
Kimmel, Jahne, & Hirche, 2016; Wolff & Buss, 2005), the control
Lyapunov barrier function (Romdlony & Jayawardhana, 2016), and
the zeroing CBF (Xu et al., 2015), among others.

Various kinds of barrier conditions have been proposed in liter-
ature. Awidely used barrier condition for a CBF B is Ḃ ≤ 0 (or Ḃ ≥ 0
depending on the context), which implies that all the sublevel sets
of B are invariant (Prajna et al., 2007; Romdlony & Jayawardhana,
2016; Tee et al., 2009; Wieland & Allgöwer, 2007). Another barrier
condition is that given in the invariance control framework, where
the higher order derivative condition of a so-called invariance
function is implemented such that the function has negative values
inside the set. In a recent paper Ames et al. (2014), the barrier
condition Ḃ ≤ 0 was modified by allowing B to grow when it is
far away from the boundary of the set and stop growing when
it approaches the boundary. Such a condition enlarges the set of
controls that can guarantee the invariance of a given set. CBFs
under such a condition are combined with CLFs, which represent

https://doi.org/10.1016/j.automatica.2017.10.005
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2017.10.005
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.10.005&domain=pdf
mailto:xuxiangr@umich.edu
https://doi.org/10.1016/j.automatica.2017.10.005


196 X. Xu / Automatica 87 (2018) 195–201

the performance objectives, in a quadratic program (QP), such that
a min-norm control law is generated via real-time optimizations.
This ideawas further extended in papers such as Ames, Xu, Grizzle,
and Tabuada (2017), Nguyen and Sreenath (2016) and Xu et al.
(2015), and applied to safety-critical systems (Ames et al., 2017),
multi-agent systems (Wang, Ames, & Egerstedt, 2016) and bipedal
robots (Hsu, Xu, & Ames, 2015).

When multiple state constraints are presented and each con-
straint is expressed as a CBF, it is important to ensure that all
the barrier conditions can be satisfied simultaneously, that is, the
set of controls satisfying all the barrier conditions is non-empty.
Particularly, for the QP-based framework proposed in Ames et al.
(2014, 2017) and Xu et al. (2015), simultaneous satisfaction of all
the barrier conditions is needed to guarantee the feasibility of the
QP. Such a shared-control problem has been investigated for CLFs
in Andrieu and Prieur (2010), Grammatico, Blanchini, and Andrea
(2014) and shown to be hard to solve in general; for instance, itwas
shown in Grammatico et al. (2014) that two convex CLFs do not
necessarily have a common control even for linear time-invariant
systems when the dimension of the system is greater than 2.

In this paper, we study the control-sharing property of multiple
high order CBFs. Roughly speaking, CBFs are said to have the
control-sharing property if for any state, there exists a common
control such that the barrier conditions are satisfied simultane-
ously. Sufficient and necessary conditions for the control-sharing
property to hold are given by assuming the CBFs have a well-
defined, global relative degree. Based on that, we investigate the
tracking control problem for input–output linearizable systems
with multiple time-varying output constraints, where each con-
straint is expressed as a CBF. Sufficient conditions for such CBFs to
have the control-sharing property are given. The barrier conditions
are expressed as hard constraints in a QP, where the objective
function is tominimize the distance between the generated control
and a nominal tracking control law. Because of the control-sharing
property of the CBFs, the QP is guaranteed to be feasible. Further-
more, the output constraints are always satisfied and the tracking
objective is achievedwhen it is not conflictingwith the constraints.
Our control design method has several advantages over existing
ones, such as the output constraints and the nominal tracking
controller can be designed separately, the reference trajectory does
not need to be restricted inside the constraint region, and the initial
output can be outside the constraint region. Two examples taken
from literature are also provided to show the effectiveness of the
proposed control design method.

A preliminary version of this work was presented in the con-
ference publication Xu (2016). The present paper is different
from Xu (2016) in the following importantways: the input–output
linearizable system (instead of the strict-feedback system in Xu,
2016) is considered; a key theorem in Xu (2016) is generalized
from the sufficient condition to the sufficient and necessary con-
ditions; the two CBFs case is generalized to the multiple CBFs
case. The remainder of the paper is organized as follows. In Sec-
tion 2, the notion of time-varying control barrier function and
the control-sharing property are introduced first, then sufficient
and necessary conditions for the control-sharing property to hold
are given. In Section 3, the tracking control problem for input–
output linearizable systems with multiple output constraints is
investigated, where two examples are also provided for illus-
trative purposes. Finally, some conclusion remarks are given in
Section 4.

2. Control-sharing barrier functions

In this section, we first provide a lemma for ensuring non-
negativeness of a function through a high order derivative con-
dition, and then introduce the notion of high order, time-varying

CBFs. After that, we define the control-sharing property ofmultiple
CBFs and give sufficient and necessary conditions for such a prop-
erty to hold.

2.1. Control barrier function

Consider a time-varying system

ẋ = f (t, x), (1)

with f : R × Rn
→ R piecewise continuous in t and locally

Lipschitz in x. For any initial condition x(0) at t = 0, there exists a
maximal time interval I(x(0)) such that x(t) is the unique solution
to (1). For simplicity, we assume that the system (1) is forward
complete, that is, I(x(0)) = [0, ∞).

Given a smooth function h(t, x) : R × Rn
→ R, its first

order derivative along the solution of (1) is h(1)(t, x) =
dh(t,x)

dt =
∂h(t,x)

∂x f (t, x) +
∂h(t,x)

∂t . The ith(i ≥ 2) order derivative of h(t, x) is
computed recursively and denoted as h(i)(t, x). In what follows, we
will also use h(i) for h(i)(t, x) when no confusion occurs.

Now suppose that h(t, x) is a C r function for some positive
integer r ≥ 1 and satisfies the following inequality:

h(r)
+ a1h(r−1)

+ · · · + ar−1h(1)
+ arh ≥ 0, (2)

where a1, . . . , ar ∈ R are a set of real numbers such that the roots
of the polynomial

pr0(λ) = λr
+ a1λr−1

+ · · · + ar−1λ + ar (3)

are real numbers−λ1, . . . ,−λr with λi > 0(1 ≤ i ≤ r). To explore
the condition under which h(t, x) is non-negative for t ≥ 0, we
define

s0(t, x) = h(t, x), sk = (
d
dt

+ λk)sk−1, 1 ≤ k ≤ r. (4)

It is clear that (2) is equivalent to sr (t, x) ≥ 0. Denote sk(0, x(0)) by
sk(0) for short where k = 0, 1, . . . , r . Then, we have the following
lemma.

Lemma 1. Given a C r (r ≥ 1) function h(t, x) : R × Rn
→ R and a

set of real numbers a1, . . . , ar ∈ R such that pr0(λ) shown in (3) has
roots −λ1, . . . ,−λr where λ1, . . . , λr > 0, if si defined in (4) satisfy
si(0) ≥ 0 for i = 0, 1, . . . , r − 1, then h(t, x) ≥ 0 for any t ≥ 0.

Proof. It is clear that inequality (2) is equivalent to d
dt (e

λr tsr−1
(t, x(t))) ≥ 0, which results in sr−1(t, x(t)) ≥ sr−1(0)e−λr t by
integrating both sides on [0, t]. Since sr−1 = ( d

dt + λr−1)sr−2,
we have d

dt (e
λr−1tsr−2(t, x(t))) ≥ sr−1(0)e(λr−1−λr )t . Integrating

both sides of this inequality on [0, t] results in sr−2(t, x(t)) ≥

sr−1(0)e−λr−1t
∫ t
0 e(λr−1−λr )τ1dτ1 + sr−2(0)e−λr−1t . Continuing this

process, we have

s0(t, x(t)) ≥ s0(0)e−λ1t +

r−1∑
k=1

[sk(0)e−λ1t
∫ t

0
e(λ1−λ2)τk

∫ τk

0
e(λ2−λ3)τk−1 ...

∫ τ2

0
e(λk−λk+1)τ1dτ1...dτk−1dτk]. (5)

For k = 1, . . . , r − 1, since λi > 0, it is easy to check that
e−λ1t

∫ t
0 e(λ1−λ2)τk

∫ τk
0 e(λ2−λ3)τk−1 ...

∫ τ2
0 e(λk−λk+1)τ1dτ1...dτk−1dτk is

positive, finite and approaches 0 as t → ∞. Since si(0) ≥ 0 for
i = 0, 1, . . . , r−1, the right-hand side of (5) is non-negative, finite
and approaches 0 as t → ∞. Therefore, h(t, x) ≥ 0 for any t ≥ 0,
which completes the proof. □

Remark 1. The conventional comparison lemma cannot be applied
to the high order inequality (2) directly (Khalil, 2002). In Gun-
derson (1971), Gunderson considered the high order differential
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