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a b s t r a c t

This paper investigates the robust stability of uncertain discrete-time linear systems subject to input
and output quantization and packet loss. First, a necessary and sufficient condition in terms of LMIs
is proposed for the quadratic stability of the closed-loop system with double quantization and norm
bounded uncertainty in the plant. Moreover, it is shown that the proposed condition can be exploited to
derive the coarsest logarithmic quantization density underwhich the uncertain plant can be quadratically
stabilized via quantized state feedback. Second, a new class of Lyapunov function which depends on the
quantization errors in a multilinear way is developed to obtain less conservative results. Lastly, the case
with input and output packet-loss channels is investigated.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Motivated by finite network resource, quantized feedback con-
trol has been one of the most popular research trends in the field
of networked control systems (see, e.g., Zhang, Gao, and Kaynak,
2013). It naturally becomes significant that how the quantization
error will influence the stability and performance of the feedback
systems. In the meanwhile, a great deal of effort has gone into
establishing the minimum feedback information needed to stabi-
lize an open-loop unstable system. Perhaps the most important
results in recent years on the quantized feedback control should
be traced back to Elia and Mitter (2001) where the logarithmic
quantization was proposed and shown to be the coarsest quan-
tizer to quadratically stabilize discrete-time linear time-invariant
systems. The logarithmic quantizer was further investigated by Fu
and Xie (2005) in which the sector bound approach was exploited
to relate the design problem for quantized feedback control to the
optimal H∞ control problem. Besides, the quantized feedback con-
trol problem has been studied in different scenarios. For instance,
Gu and Qiu (2014) put forward the polar logarithmic quantization
for multi-input systems; Gu, Wan, and Qiu (2015) studied the
mean-square stabilization for networked control systems with
both fading channels and logarithmic quantization; Coutinho, Fu,
and de Souza (2010) and Xia, Yan, Shi, and Fu (2013) considered
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feedback control systems with input and output quantization. On
the other hand, packet loss is also a widely studied topic as one of
themain communication constraints, see, e.g., Rich and Elia (2015).
Among the works considering both the effect of quantization and
packet loss, one should mention Ishido, Takaba, & Quevedo (2011)
which investigated the digital channel subject to packet loss and
finite-level quantization, Tsumura, Ishii, andHoshina (2009)which
analyzed the tradeoffs between the coarsest quantizer, packet-loss
rate and the instability of the plant.

More recently, another research aspect that researchers have
started to deal with is the effect of plant uncertainty. See, e.g.,
Su and Chesi (2017a) which considered robust stability of un-
certain system over fading channels, Fu and Xie (2010) where
sufficient conditionwas proposed for robust stabilization for linear
uncertain systems via logarithmic quantized feedback, Liu, Frid-
man, and Johansson (2015) which studied the stability analysis
of continuous-time uncertain system with dynamic quantization
and communication delays, Hayakawa, Ishii, and Tsumura (2009)
in which adaptive quantized control was designed for nonlinear
uncertain system, Kang and Ishii (2015) which considered coarsest
quantization for a class of finite-order uncertain autoregressive
plant.

In this paper,we first consider themodel of double quantization
as studied in Coutinho et al. (2010) with the plant affected by
unstructured uncertainty and then further integrate the effect of
input and output packet loss. Specifically, the controller output
and the plant output are transmitted through input and output
packet-loss channels respectively after being quantized via two in-
dependent logarithmic quantizers. First, a necessary and sufficient
condition in terms of LMIs is proposed for the quadratic stability
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of the closed-loop system with double quantization and norm
bounded uncertainty in the plant. Moreover, it is shown that the
proposed condition can be exploited to derive the coarsest loga-
rithmic quantization density under which the uncertain plant can
be robustly quadratically stabilized via quantized state feedback.
Second, a new class of Lyapunov function which depends on the
quantization errors in amultilinear way is developed to obtain less
conservative result. Lastly, a sufficient condition is established to
ensure the robust stability in the mean square sense for the uncer-
tain closed-loop systems with input and output quantization and
packet-loss channels. A conference version of this paper (without
Section 4 and part of Section 5) is reported in Su and Chesi (2017b).

2. Quadratic stability of uncertain systems with input and out-
put quantization

In this section, we focus on the robust quadratic stability of
uncertain systems with input and output quantization. Let us first
consider the single-input single-output plant affected by uncer-
tainty described as{
xp(k + 1) = (A + A1)xp(k) + (B + B1)u(k)

y(k) = Cxp(k)
(1)

where xp(k) ∈ Rn is the plant state, u(k) ∈ R is the plant input and
y(k) ∈ R is the plant output, (A, B) is the nominal system and the
time-varying uncertainty (A1, B1) is assumed to be norm bounded
satisfying

[A1 B1] = HF (k)[E1 E2], F (k)F (k)T ≤ I. (2)

The controller is assumed to be dynamic, described as{
xc(k + 1) = Acxc(k) + Bcv(k)

w(k) = Ccxc(k) + Dcv(k)
(3)

where xc(k) ∈ Rnc is the controller state, v(k) ∈ R is the controller
input and w(k) ∈ R is the controller output.

Following the works Elia & Mitter (2001) and Fu & Xie (2005),
we utilize the logarithmic quantization defined as

Q (v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ i if

1
1 + δ

ρ i < v ≤
1

1 − δ
ρ i

v > 0, i = ±1, ±2, . . .
0 if v = 0
−Q (−v) if v < 0

(4)

where 0 < ρ < 1 is the quantization density and δ =
1−ρ

1+ρ
. It

is assumed that the output of the plant y(k) is quantized before
being sent to the input of the controller v(k) and the output of the
controller w(k) is quantized before being sent to the input of the
plant u(k). The two quantizers are modeled as

v(k) = Q1(y(k)), u(k) = Q2(w(k)) (5)

where Q1(·) and Q2(·) are static logarithmic quantizers with quan-
tization density ρ1 and ρ2.

Let x(k) = [xp(k)T xc(k)T ]T be the state of the closed-loop
system. Comprising the plant, the controller and the quantizers,
such a closed-loop system is given by

x(k + 1) =

(
xp(k + 1)
xc(k + 1)

)
=

(
(A + A1)xp(k)

Acxc(k)

)
+

(
(B + B1)Q2(Ccxc(k) + DcQ1(Cxp(k)))
BcQ1(Cxp(k))

)
.

(6)

When there is no uncertainty in the plant, i.e., A1 = 0 and
B1 = 0, it is shown in Theorem 2 of Coutinho et al. (2010) that the

closed-loop system (6) is quadratically stable if and only if there
exists P > 0 such that
Ā(∆1, ∆2)TPĀ(∆1, ∆2) − P < 0

∀|∆1| ≤ δ1, |∆2| ≤ δ2
(7)

where
Ā(∆1, ∆2) =(
A + B(1 + ∆2)Dc(1 + ∆1)C B(1 + ∆2)Cc

Bc(1 + ∆1)C Ac

)
.

(8)

Lemma 1 (Amato, Garofalo, Glielmo, and Pironti, 1996; Garofalo,
Celentano, and Glielmo, 1993). Consider the matrix-valued function
M(p) : P → Rn×n, where p ∈ P ⊂ Rq and the set P is a hyper-box,
i.e., P := [p1, p1] × [p2, p2] × · · · × [pq, pq]. Let us assume

M(p) =
N(p)
d(p)

, (9)

with N(·) a multi-affine matrix-valued function of p, d(·) a multi-
affine polynomial of p and d(p) ̸= 0 for all p ∈ P . Then M(p) >
0, ∀p ∈ P if and only if M(p(i)) > 0, i = 1, . . . , 2q where p(i) is the
i-th vertex of P .

Therefore, it is necessary and sufficient to check the quadratic
stability of an uncertain systemdependingmulti-affinely onuncer-
tain parameters constrained into a hyper-box on the vertices of the
hyper-box under the same Lyapunov function v(x(k)) = x(k)TPx(k).

Next, let us take the uncertainty (A1, B1) into consideration. By
treating the quantization errors as sector bounded time-varying
uncertainties, let us define the auxiliary system for (6) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = Â(∆1(k), ∆2(k))x(k)

Â(∆1, ∆2) =

(
A + A1 0

0 Ac

)
+(

(B + B1)(1 + ∆2)([0 Cc] + Dc(1 + ∆1)[C 0])
Bc(1 + ∆1)[C 0]

)
∀|∆1(k)| ≤ δ1, |∆2(k)| ≤ δ2.

(10)

Before proceeding to ourmain result, let us report the following
result (see, e.g., Xie, 1996).

Lemma 2.Given real matrices S = ST ,U,V with appropriate dimen-
sion, then

S + UF (k)V + VT F (k)TUT > 0 (11)

holds for all F (k) satisfying F (k)F (k)T ≤ I if and only if there exists a
scalar σ > 0 such that

S − σUUT
− σ−1VTV > 0. (12)

Theorem 3. The closed-loop system (6) is robustly quadratically
stable if and only if there exist Q > 0 and a scalar σ (∆1, ∆2) > 01
such that⎛⎝Q Q Ā(∆1, ∆2)T Q Ē(∆1, ∆2)T

∗ Q − σ (∆1, ∆2)H̄H̄T 0
∗ ∗ σ (∆1, ∆2)I

⎞⎠ > 0

∀∆1 ∈ {−δ1, δ1} , ∆2 ∈ {−δ2, δ2}

(13)

where Ā(∆1, ∆2) is defined in (8), and⎧⎪⎨⎪⎩
Ē(∆1, ∆2) =(

E1 + E2(1 + ∆2)Dc(1 + ∆1)C E2(1 + ∆2)Cc
)

H̄ =
(
HT 0

)T
.

(14)

1 Since (∆1, ∆2) takes value only at the vertices of [−δ1, δ1] × [−δ2, δ2] in (13),
σ (∆1, ∆2) amounts to 4 scalar variables corresponding to the 4 vertices, i.e., the
variable σ in the LMI (13) is allowed to vary with different vertex.
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