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a b s t r a c t

In this paper, a Markov inequality based switching rule is proposed to switch among numerically
computed, time optimal controllers in a multiple vehicle intercept problem. Each controller is optimal
for the intercept of a single vehicle, i.e., for the segment of the complete time varying multiple vehicle
target set. The switching rule guarantees that after every switch the time to the target set is shorter with
a certain predefined probability. Furthermore, the rule guarantees that the target set is reached after a
finite number of switches and the rule scales well with the number of vehicles, i.e., the segments covering
the target set. The problem and results are illustrated by a numerical example.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical methods of stochastic optimal control (Kushner &
Dupuis, 2001) are attractive for designing state feedback con-
trollers for nonlinear dynamical systems described by stochastic
differential equations (Øksendal, 2010). Generally, these computed
controllers are in the form of a lookup table and can be executed
fast in real-time applications for reaching a target set in aminimum
expected time (Anderson, Efstathios, Milutinović, & Panagiotis,
2012). However, the computed controller is specific to the target
set, and in the case of a time varying target set, the controller
must be recomputed, which in most cases is too slow for real time
implementations.

This paper is motivated by amultiple vehicle intercept problem
presented in Section 2. While we know how to compute a mini-
mum time optimal control to intercept a single vehicle by using
its relative position coordinates, in the case of multiple vehicles,
the number of necessary relative coordinates increases linearly,
which quickly exhausts the computational power for computing
an optimal solution due to the so-called curse of dimensionality. In
addition, let us assume that we can compute the controller for N
vehicles. That controller will be valid only for the specific number
N . Adding or removing one vehicle would require that the optimal
control be changed. It would mean that we need to compute
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not one, but multiple optimal controllers, one for each possible
number of vehicles up to a maximum number of vehicles, and
select or switch to the controller that matches the current number
of vehicles. Since it is known (Branicky, 1998) that switching
amongmultiple satisfactory controllers may lead to unsatisfactory
outcomes, this is unacceptable and an additional level of analysis
is necessary.

For the case of multiple vehicles, we propose to use the min-
imum time optimal control to intercept a single vehicle and a
switching rule to select which vehicle to intercept. The proposed
rule guarantees that after every switch, the time to intercept is
reduced with a certain predefined probability. The rule is based on
the computed state dependent expected time to intercept and the
optimal control; therefore, the switching is also state dependent.
The resulting switching rule based navigation scales well with the
number of vehicles.

The dynamics of the motivating problem (Section 2) with
switchings among the vehicles can be modeled with deterministic
transitions over a finite number of discrete states (one per vehicle)
and stochastic differential equation dynamics in each state, the
so-called stochastic switched system (see Table 1 in Teel, Subbara-
mana, and Sferlazza (2014)). The stability of deterministic versions
of such systems has been studied using Lyapunov function and
multiple Lyapunov function approaches (Branicky, 1998) and a
stability analysis of stochastic versions used similar tools applied to
statistical estimates of Lyapunov functions (Chatterjee & Liberzon,
2004) and a comparison principle (Chatterjee & Liberzon, 2006).
The moment stability for such systems has also been analyzed
in Boukas (2006), Feng, Jieand, and Ping (2011), Feng and Zhang
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Fig. 1. Geometry and state-space representation of an aerial vehicle A at position
(xA, yA) and two ground vehicles (Gi), at (xGi , yGi ), i = 1, 2; θEGi , θA are heading
angles; ϕi and ri are bearing angles and ranges from A to Gi; vA is the aerial vehicle
velocity and vGi are ground vehicle velocities.

(2006) and Filipović (2009). However, in all these references,
including (Chatterjee & Liberzon, 2004, 2006), the analysis is fo-
cused on a time-dependent switching signal and not on a state-
dependent switching (Zhang,Wu, & Xia, 2014). A hysteresis-based
switching in the context of supervisory control of uncertain sys-
tems has been proposed in Hespanha, Liberzon, andMorse (2003),
but only recently has the state-dependent switching law for the
stochastic switched systems been considered in Wu, Cui, Shi, and
Karimi (2013) and Zhang et al. (2014). Furthermore, the stability
of the sliding mode control for semi-Markovian jump systems has
been considered in Li, Wua, Shi, and Lim (2015). To the best of
our knowledge, a state-dependent switching policy that reduces
the time to reach a target set and prevents an infinite number of
switchings has not been considered so far. Another novelty of the
work presented here is that the policy is scalable, which makes it
suitable for the navigation of an autonomous vehicle surrounded
by a number of other vehicles.

While the problemmotivation in Section 2 suggests the applica-
tion of the switching rule to navigation inmulti-agent systems (Di-
marogonas & Kyriakopoulos, 2004), in Section 3 we discuss the
switching in the context of a target set which is a union of target
segment sets, where each segment set corresponds to a single ve-
hicle. Therefore, the switching rule is potentially relevant to other
robotics applications that appear in the similar form, for example,
those inwhich segments can be associatedwith sets corresponding
to robot end effector grasping configurations. Section 4 illustrates
our results using the multiple vehicle problem and statistical anal-
ysis, and Section 5 gives conclusions.

2. Problemmotivation

Let us consider a scenario with three agents depicted in Fig. 1.
Two of the agents are ground vehicles G1 and G2 with equal speeds
vG1 = vG2 = vG. The third agent is an aerial vehicle (A) flying at
a constant altitude. The kinematic model of A is a deterministic
Dubins vehicle model describing the vehicle’s position xA, yA and
heading angle θA as

dxA = vA cos(θA)dt (1)
dyA = vA sin(θA)dt (2)
dθA = uAdt (3)

where the A’s velocity, vA > vG, is a known constant, and its control
input is the bounded heading rate uA ∈ [−1, 1]. The agent A’s goal
is to navigate in a minimum time into the vulnerable tail sector
Ti(t), i = 1, 2 of one or the other ground vehicle for inspection
purposes. Therefore, the target set for A is T (t) = T1(t) ∪ T2(t)
and the time dependence is the consequence of ground vehicle
motion. However, A has no knowledge of ground vehicles’ navigation

Fig. 2. (a) The target segment set Ti(t), which is the circular sector behind the
moving Gi . (b) Agent A is inside the target set, while in (c) agent A is not in the
target set, because its heading is not aligned with Gi . (d) The time invariant set ST

i
is shown in a 3D-space, ri, ϕi, αi .

strategy. To anticipate that uncertainty, the kinematics of each
ground vehicle is modeled by the stochastic dynamics

dxGi = vG cos(θGi )dt, i = 1, 2 (4)
dyGi = vG sin(θGi )dt (5)
dθGi = σGdwi, (6)

where the vehicle positions are given by xGi , yGi and the heading
angles are θGi (t) =

∫ t
0 σEdwi, which are continuous time random

walks since dwi denotes the Wiener process increments. The scal-
ing parameter σG is identical for both vehicles.

The vulnerable tail Ti(t) sector is a circular sector attached to the
back of the ground vehicle Gi, see Fig. 2, and we also refer to it as a
target segment. The relative position between A and Gi is uniquely
defined based on the triple of relative coordinates (ri, ϕi, αi), where
ri is the distance between A and Gi, ϕi is the bearing angle from A to
Gi, and αi is the difference between the A’s and Gi’s heading angles.
Therefore, the time varying target segment Ti(t) in the Cartesian
space can be represented as a time invariant set ST

i ∈ R in the
space of relative coordinates R ⊂ R3

ST
i =

{
[r, r] × [−ϕ, ϕ] × [−α, α]

}
, (7)

with 0 < r < r , ϕ > 0, and α > 0 (see Fig. 2). The time invariant
ST
i is a box in the state space defined by ri, ϕi, and αi, and the

facet of this cube for ri = r is depicted in Fig. 2d. For the time
invariant set ST

i , we can formulate and compute the Hamilton–
Jacobi–Bellman (HJB) equation solution for the minimum time
optimal controller to reach Ti(t). The result is the optimal control
ui(ri, ϕi, αi) which is state dependent and defines the value of
control variable for a given relative position (ri, ϕi, αi) between A
and Gi, and for every i. If the aerial vehicle A is tasked to reach the
tail sector Ti of a specific Gi, then the computed optimal control
ui defines the optimal way to do it and a further analysis of the
problem is unnecessary.

However, computations for aminimum time optimal controller
for the target set T (t) = T1(t) ∪ T2(t) require the time invariant
set ST

⊂ R6 since the configuration of agents requires 6 relative
coordinates, i.e., three per the target segment. The same number of
dimensions is also necessary to describe the state feedback control.
If we consider reaching the segmented target set T (t) = ∪

N
i=1Ti(t),

then the number of state variables is 3N . For example, in Section 4,
we present the multiple vehicle problem with 5 vehicles, which
requires dealing with a 15-dimensional state space. This large
number of dimensions quickly exhausts the computational power
for computing the HJB equation solution and the optimal control.
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