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a b s t r a c t

This paper proposes a novel lifting method which converts the standard discrete-time linear periodic
system to an augmented linear time-invariant system. The linear quadratic optimal control is then based
on the solution of the discrete-time algebraic Riccati equation associatedwith the augmented linear time-
invariant model. An efficient algorithm for solving the Riccati equation is derived by using the special
structure of the augmented linear time-invariant system. It is shown that the proposed method is very
efficient, compared to the ones that use algorithms for discrete-time periodic algebraic Riccati equation.
The efficiency and effectiveness of the proposed algorithm is demonstrated by the simulation test for the
design problem of spacecraft attitude control using magnetic torques.

Published by Elsevier Ltd.

1. Introduction

Many engineering systems are naturally periodic, for exam-
ple, spacecraft attitude control using magnetic torques (Lovera
& Astolfi, 2004), helicopter rotors control system (Arcara, Bit-
tanti, & Lovera, 2000), wind turbine control system (Stol, 2003),
networked control system (Zhang & Hristu-Varsakelis, 2006), and
multirate sampled data system (Khargonekar & Sivashankar,
1991). It has been known for about six decades that linear periodic
time-varying system can be converted to some equivalent linear
time-invariant systems (Jury & Mullin, 1958, 1959). The most
popular and widely used methods that convert the linear periodic
time-varying model into linear time-invariant models are the so-
called lifting methods proposed in Grasselli and Longhi (1991),
Meyer and Burrus (1975) and Varga (2013). These reduced linear
time-invariant models are nice for analysis but they are very diffi-
cult, if it is not impossible, for Linear Quadratic Regulator (LQR) de-
sign. Therefore, the LQR design for linear periodic system has been
focused on the periodic system not on the equivalent linear time-
invariant systems proposed in Grasselli and Longhi (1991) and
Meyer and Burrus (1975). This strategy leads to extensive research
on the solutions of the periodic Riccati equations (see Bittanti,
1991; Bittanti, Colaneri, & Guardabassi, 1986; Bittanti, Colaneri,
& Nicolao, 1989; Varga, 2008, 2013 and references therein). For
the discrete-time linear periodic system, two efficient algorithms
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for Discrete-time Periodic Algebraic Riccati Equation (DPARE) are
emerged (Hench & Laub, 1994; Yang, 2017a).

In this paper, we propose a novel lifting method that converts
the linear periodic system to an augmented Linear Time-Invariant
(LTI) system. We show that the LQR design method can be directly
applied to this LTI system. Moreover, by making full use of the
structure of the augmented LTI system, we can derive a very
efficient algorithm. We compare the new algorithm to the ones
proposed in Hench and Laub (1994) and Yang (2017a). In addition
to some simple analysis on the efficiency, we demonstrate the
efficiency and effectiveness of the new algorithmby the simulation
test for the design problems of spacecraft attitude control using
magnetic torques.

The remainder of the paper is organized as follows. Section
2 briefly summarizes the algorithms of Hench and Laub (1994)
and Yang (2017a) so that we can compare the proposed algo-
rithm to the existing ones and analyze the efficiency of these
algorithms. Section 3 proposes a novel lifting method and applies
some standard discrete-time algebraic Riccati equation result to
the augmented LTI model. This leads to a very efficient algorithm
for the LQR design for the linear periodic system. Section 4 demon-
strates the efficiency and effectiveness of the algorithm by some
numerical test. Conclusions are summarized in the last section.

2. Periodic LQR design based on linear periodic system

In this section, we briefly review two efficient algorithms for
solving DPARE developed in Hench and Laub (1994) and Yang
(2017a). This will help us later in the comparison of the proposed
method to the existing methods.
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Let p be an integer representing the total number of samples
in one period in a periodic discrete-time system. We consider the
following discrete-time linear periodic system given as follows:

xk+1 = Akxk + Bkuk, (1)

where Ak = Ak+p ∈ Rn×n and Bk = Bk+p ∈ Rn×m are periodic time-
varying matrices. For this discrete-time linear periodic system (1),
the LQR state feedback control is to find the optimaluk tominimize
the following quadratic cost function

lim
N→∞

(
min

1
2
xTNQNxN +

1
2

N−1∑
k=0

xTkQkxk + uT
kRkuk

)
(2)

where

Qk = Qk+p ≥ 0, (3)

Rk = Rk+p > 0, (4)

and the initial condition x0 is given. Assume that Qk = CkCT
k .

It is well-known that under the assumption of the stabilizability
of (Ak,Bk) and observability of (Ak, Ck), the LQR design for prob-
lem (1)–(2) can be solved by using the periodic solution of the
discrete-time periodic algebraic Riccati equation (Bittanti, 1991).
Two efficient algorithms (Hench & Laub, 1994; Yang, 2017a) have
been developed to solve p n-dimensional matrix Riccati equations
for p positive semidefinite matrices Pk, k = 1, . . . , p. Given
Pk, the periodic feedback controllers are given by the following
equations:

uk = −(Rk + BT
kPkBk)−1BT

kPkAkxk. (5)

We summarize these two algorithms as follows: Let

Ek =

[
I BkR−1

k BT
k

0 AT
k

]
= Ek+p, (6)

Fk =

[
Ak 0

−Qk I

]
= Fk+p. (7)

If Ak is invertible, then Ek and Fk are invertible, and

E−1
k =

[
I −BkR−1

k BT
kA

−T
k

0 A−T
k

]
= E−1

k+p

and

F−1
k =

[
A−1
k 0

QkA−1
k I

]
= F−1

k+p.

Let yk be the costate of xk, zk = [xTk, y
T
k]

T, and

Πk = E−1
k+p−1Fk+p−1E−1

k+p−2 . . . E−1
k+1Fk+1E−1

k Fk
= Πk+p, (8)

Γk = F−1
k EkF−1

k+1Ek+1 . . . , Ek+p−2F−1
k+p−1Ek+p−1

= Γk+p. (9)

The solutions of p discrete-time periodic algebraic Riccati equa-
tions are symmetric positive semi-definite matrices, Pk, k =

1, . . . , p, which are related to the solutions of either one of the two
linear systems of equations (Hench & Laub, 1994; Yang, 2017a):

zk+p = Πkzk, (10)

zk = Γkzk+p. (11)

Therefore, Pk, k = 1, . . . , p, can be obtained by two methods. The
first method uses Schur decomposition:[
T11k T12k
T21k T22k

]T
Πk

[
T11k T12k
T21k T22k

]
=

[
S11k S12k
0 S22k

]
, (12)

where S11k is upper-triangular and has all of its eigenvalues inside
the unit circle. The periodic solution Pk, k = 1, . . . , p, is given
by Hench and Laub (1994)

Pk = T21kT−1
11k. (13)

The second method uses Schur decomposition:[
W11k W12k
W21k W22k

]T
Γk

[
W11k W12k
W21k W22k

]
=

[
U11k U12k
0 U22k

]
, (14)

whereU11k is upper-triangular andhas all of its eigenvalues outside
the unit circle. The periodic solution Pk, k = 1, . . . , p, is given
by Yang (2017a)

Pk = W21kU−1
11k. (15)

Remark 2.1. Both algorithms solves general DPARE problem with
similar efficiency. But ifAk andQk are constantmatrices, the second
method is much efficient because Fk becomes a constant matrix
and F−1

k = · · · = F−1
k+p−1 = F−1, which makes the computation of

(9) much more efficient than the computation of (8).

3. Periodic LQR design based on linear time-invariant system

We propose a lifting method in this section to convert the
discrete-time linear periodic system into an augmented linear
time-invariant system. Thereby, the periodic LQR design is reduced
to the LQR design for the augmented linear time-invariant system.

To simplify our discussion, let us consider a periodic system
with p = 3. We will use k for the discrete-time in the periodic
system and K for the discrete-time in the augmented system.

x1 = A0x0 + B0u0,

x2 = A1x1 + B1u1,

x3 = A2x2 + B2u2,

x4 = A0x3 + B0u3,

x5 = A1x4 + B1u4,

x6 = A2x5 + B2u5,

x7 = A0x6 + B0u6,

....

We can easily regroup the periodic system and rewrite it as the
following form:

x̄1 =

[x1
x2
x3

]
=

[0 0 A0
0 0 A1A0
0 0 A2A1A0

][ 0
0
x0

]

+

[ B0 0 0
A1B0 B1 0

A2A1B0 A2B1 B2

][u0
u1
u2

]
= Āx̄0 + B̄ū0,

x̄2 =

[x4
x5
x6

]
=

[0 0 A0
0 0 A1A0
0 0 A2A1A0

][x1
x2
x3

]
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