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a b s t r a c t

In this paper, a novel iterative algorithm with a tuning parameter is developed to solve the forward
discrete periodic Lyapunov matrix equation associated with discrete-time linear periodic systems. An
important feature of the proposed algorithm is that the information in the current and the last steps is
used to update the iterative sequence. The convergence rate of the algorithmcanbe significantly improved
by choosing a proper tuning parameter. It is shown that the sequence generated by this algorithm with
zero initial conditions monotonically converges to the unique positive definite solution of the periodic
Lyapunov matrix equation if the tuning parameter is within the interval (0, 1]. In addition, a necessary
and sufficient convergence condition is given for the proposed algorithm in terms of the roots of a set
of polynomial equations. Also, a method to choose the optimal parameter is developed such that the
algorithm has the fastest convergence rate. Finally, numerical examples are provided to illustrate the
effectiveness of the proposed algorithm.

© 2017 Published by Elsevier Ltd.

1. Introduction

Periodic linear systems are a class of important time-varying
systems, and have found wide applications. For instance, periodic
linear systems have been used to capture multirate sampled-date
systems (Chen & Francis, 1995), and pendulums (Bittanti, Her-
nandez, & Zerbi, 1991). In analysis and design of periodic linear
systems, the discrete periodic Lyapunov (DPL) matrix equation
plays a very important role. In Varga (1997), a necessary and suf-
ficient condition was given for asymptotic stability of the discrete-
time periodic linear system in terms of the corresponding DPL
matrix equation. In addition, the DPL matrix equation can be also
used to check the controllability and observability of discrete-time
periodic systems (Halanay & Ionescu, 1994).

Some approaches have been proposed to solve the DPL matrix
equation related to the periodic linear system. In Varga (1997),
the DPL matrix equation was first transformed into a matrix–
vector equation with the help of Kronecker product, and then
the solution was explicitly obtained by Doolittle algorithm. An
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iterative algorithm was also constructed in Varga (1997) in terms
of an augmented matrix. It has been known in Sreedhar and
Van Dooren (1994) that a DPL matrix equation can be transformed
into a standard discrete Lyapunov matrix equation. Hence some
methods (Ding & Chen, 2005a, 2005b; Wang, Cheng, &Wei, 2007)
for standard Lyapunov matrix equations can be applied to solve
DPL matrix equations. A common shortcoming of the previous
approaches is that the transformed matrix equations have much
higher dimensionality than the original DPL matrix equations. It
has been pointed out in Borno (1995) that high-dimensional ma-
trices should be avoided in practical computations.

In Zhou, Duan, and Li (2009), a gradient-based iterative algo-
rithm was developed to solve coupled matrix equations. In Zhang
(2015), the reduced-rank gradient-based algorithms were pre-
sented for generalized coupled Sylvestermatrix equations. TheDPL
matrix equation is a special coupled matrix equation, and thus
the two algorithms in Zhang (2015) and Zhou et al. (2009) can
be used to solve it. In Borno and Gajic (1995), a parallel iterative
scheme was given for solving coupled Lyapunov matrix equations
in discrete-timeMarkovian jump linear systems. The idea in Borno
andGajic (1995) can be adopted to construct an iterative algorithm
for the DPL matrix equation.

When the iterative algorithms in Borno and Gajic (1995), Zhang
(2015) and Zhou et al. (2009) are applied to solve the DPL matrix
equation, in each iteration step the current estimation of each
unknownmatrix is updated by only using the information obtained
in the last step. In fact, some available information in the last and
current steps can be used. This is the idea of ‘‘using latest updated
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information’’, and has been used in Wu and Duan (2015) to
construct a new iterative algorithm for solving coupled Lyapunov
matrix equations appearing in discrete-time Markovian jump lin-
ear systems. Recently, this idea was also applied in Wu and Chang
(2016) to obtain iterative algorithms for DPL matrix equations. In
this paper, we consider another DPL matrix equation. Based on
an equivalent form of the considered DPL matrix equation a novel
iterative algorithm is proposed for solving theDPLmatrix equation.
Analogous to the methods in Wu and Chang (2016) and Wu and
Duan (2015), the idea of ‘‘using latest updated information’’ is
also used. The convergence property of the proposed algorithm is
analyzed in this paper. A necessary and sufficient condition is given
for the proposed algorithm to be convergent in terms of the roots
of a set of polynomial equations. In addition, an approach is also
developed to choose the optimal tuning parameter such that the
algorithm achieves the fastest convergence rate.

Throughout this paper, we use AT, det(A), tr(A), σ(A), and ρ(A) to
denote the transpose, determinant, trace, spectrum and spectral
radius of the matrix A, respectively. For two integers a ≤ b,
the notation I[a, b] is defined as I[a, b] = {a, a + 1, . . . , b}. The
notation ∥A∥F refers to the Frobenius norm of the matrix A. X =

(X1, X2, . . . , Xn) denotes a matrix tuple, and X > 0 means all the
matrices Xi, i ∈ I[1, n], are positive definite. The vectorization of
a matrix A ∈ Rn×n is defined as vec(A) =

[
aT1 aT2 · · · aTn

]T and
the notation A⊗ B represents the Kronecker product of matrices A
and B. In addition, we use diag(A1, A2, . . . , An) to represent a block
diagonal matrix with the diagonal elements A1, A2, . . . , An.

2. Preliminaries and previous results

Consider the following discrete-time linear periodic system:

x (t + 1) = Atx(t), (1)

where x(t) ∈ Rn is the state vector, At ∈ Rn×n is the ω-periodic
system matrix with ω ≥ 1 being an integer, namely,

At+ω = At . (2)

The asymptotic stability of the discrete-time linear periodic system
(1) can be characterized by the correspondingDPLmatrix equation.

Lemma 1 (Varga (1997)). Let Qk > 0, k ∈ I[1, ω], be given
positive definite matrices withω ≥ 1, the linear periodic system (1) is
asymptotically stable if and only if the following forward DPL matrix
equation{
AkXkAT

k − Xk+1 = −Qk, k ∈ I[1, ω],

Xω+1 = X1,
(3)

has a unique positive definite solution.

From the conclusion in Sreedhar and Van Dooren (1994), the
forward DPL matrix equation (3) can be rewritten as the standard
discrete Lyapunov matrix equation AXAT

− X = −Q , where⎧⎪⎪⎨⎪⎪⎩
X = diag (X1, X2, . . . , Xω) ,

Q = diag (Qω,Q1, . . . ,Qω−2,Qω−1) ,

A =

[
0 Aω

diag (A1, A2, . . . , Aω−1) 0

]
.

(4)

The gradient based iterative algorithms in Ding and Chen (2005a,
2005b) can be used to solve the matrix equation (3), and the
algorithm can be obtained as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X(m + 1) =
1
2
[X1(m + 1) + X2(m + 1)],

X1(m + 1) = X(m) − µAT
[Q + AX(m)AT

− X(m)]A,

X2(m + 1) = X(m) + µ[Q + AX(m)AT
− X(m)],

µ = (ρ2(AAT) + 1)−1,

(5)

where the matrices A and Q are defined in (4), and X(m) is the
estimate of the matrix X at the m-th step. By specializing the
algorithm in Wang et al. (2007), the following algorithm can be
established:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (m) = Q − X(m) + AXT(m)AT,

P(m) = F (m) − ATF T(m)A,

X(m + 1) = X(m) +
∥F (m)∥2

F

∥E(m)∥2
F

E(m),

E(m + 1) = P(m + 1) −
tr(PT(m + 1)E(m))

∥E(m)∥2
F

E(m),

(6)

where E(0) = P(0), and an arbitrary initial matrix X(0) ∈ Rnω×nω

is given.
By using the idea in Borno and Gajic (1995), the following

algorithm can be established:

Xk+1(m + 1) = AkXk(m)AT
k + Qk, k ∈ I[1, ω], (7)

with Xω+1(m) = X1(m) for any integer m ≥ 0. By using the
idea in Borno and Gajic (1995), the convergence condition for the
algorithm (7) can be given.

The idea in Wu and Chang (2016) can be used, and thus the
following iterative algorithms can be obtained to solve the forward
DPL matrix equation (3):{
Xk(m + 1) = Ak−1Xk−1(m)AT

k−1 + Qk−1, k ∈ I[1, ω − 1],

Xω(m + 1) = Aω−1Xω−1(m + 1)AT
ω−1 + Qω−1,

(8)

and⎧⎪⎨⎪⎩
Xω(m + 1) = Aω−1Xω−1(m)AT

ω−1 + Qω−1,

Xω−k(m + 1) = Aω−k−1Xω−k−1(m + 1)AT
ω−k−1

+Qω−k−1, k ∈ I[1, ω − 1],
(9)

with X0(m) = Xω(m), A0 = Aω , and Q0 = Qω for m ≥ 0.
At the end of this section, we give the following preliminary

results, which will be used in the next sections.

Lemma 2 (Bibby (1974)). Let {P(i)} be a sequence of positive definite
matrices satisfying the following two properties:

(1) P(k) ≤ P(k + 1), for any integer k ≥ 0;
(2) There exists a positive definite matrix P such that P(i) ≤ P for

any integer i ≥ 0.
Then the sequence {P(i)} is convergent.

Lemma 3 (Chen and Chen (2001)). For any x(0) ∈ Rn, the sequence
x(m) generated by the following iterative algorithm

x(m + 1) = Gx(m) + c,m ≥ 0, (10)

converges to the unique solution of x = Gx+c if and only if ρ(G) < 1.
The convergence rate of this iterative algorithm is

R = − ln ρ(G). (11)

Lemma 4 (Chen and Chen (2001)). Given matrices Bi ∈ Rn×n,
i ∈ I[1, ω], define

Φ(j) =

⎛⎝ ω−1∏
i=ω−j+1

Bω−i

⎞⎠(ω−j∏
i=0

Bω−i

)
, j ∈ I[2, ω].

Then there holds[
0 Bω

Ξ 0

]ω

= diag (Φ(1), Φ(2), . . . , Φ(ω)) , (12)

where Ξ = diag (B1, B2, . . . , Bω−1), and Φ(1) = BωBω−1 . . . B1.
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