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a b s t r a c t

Maximum likelihood methods are significant for parameter estimation and system modeling. This paper
derives amaximum likelihood principle based least squares identification algorithm for online secondary
path modeling in feed-forward active noise control systems with autoregressive moving average noise.
This derivation proves that minimizing the cost function of least squares is equivalent to the maximum
of likelihood function. Proposed method requires tuning of only one parameter in comparison with other
recognized methods. Simulation tests show that proposed algorithm has better estimation accuracy and
noise reduction capability than the current state-of-the-art methods in the presence and absence of
disturbance at the error microphone.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Active noise control (ANC) has been receiving much attention
for its ability to attenuate low frequency unwanted noise by
generating an anti-noise which destructively interferences with
primary noise in the desired zone (Kuo & Morgan, 1996; Lueg,
1936). The first design of ANC system that utilized an electronically
driven speaker and a microphone was patented by Lueg in 1936
(Lueg, 1936). Basic configuration of feed-forward ANC system is
shown in Fig. 1. In a feed-forward system, reference signal x(n)
is detected by a reference microphone before it passes through
primary acoustic path. An error microphone is used to pick up the
residual noise e(n) and an adaptive noise control filter is deployed
to generate the canceling signal. A noise control filter is usually
adapted by Filtered-x least mean square (FxLMS) algorithm. The
effectiveness of FxLMS algorithm is established by its presence in
several developments in ANC systems (Ahmed, Akhtar, & Zhang,
2013; Akhtar, Abe, & Kawamata, 2006, 2007; Aslam & Raja, 2015;
Carini & Malatini, 2008; Davari & Hassanpour, 2009; Eriksson &
Allie, 1989; Kuo & Vijayan, 1997; Zhang, Lan, & Ser, 2001, 2003).
In this algorithm, an estimate of secondary path (which includes
digital-to-analog converter, reconstruction filter, power amplifier,
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loud speaker, acoustic path from loud speaker to errormicrophone,
error microphone, pre-amplifier, anti-aliasing filter and analog-to-
digital converter) is required for updating the filter coefficients
(Kuo & Morgan, 1996). The impact of secondary path estimation
error in reducing the stability andnoise reduction capability of ANC
systems is studied in detail in Ardekani and Abdulla (2012), Sato
and Sone (1996), Snyder and Hansen (1994) and Tobias, Bermudez,
and Bershad (2000).

Secondary path modeling has been receiving a great deal of
attention in parameter estimation and identification (Ahmed et al.,
2013; Akhtar et al., 2006, 2007; Aslam & Raja, 2015; Carini &
Malatini, 2008; Davari & Hassanpour, 2009; Eriksson & Allie, 1989;
Gaiotto, 2013; Kuo & Vijayan, 1997; Tyagi, Katre, & George, 2014;
Zhang et al., 2001, 2003). However, acoustic paths are time-
varying in nature due to environmental modifications, thermal
variations and component aging (Kuo & Morgan, 1996). One
way to address this problem is to use methods which do not
require secondary path estimation like the evolutionary computing
algorithms (Chang & Chen, 2010; George & Panda, 2012; Rout,
Das, & Panda, 2012). Another way to tackle this issue is the
online estimation of secondary path parameters. Eriksson et al.
proposed the on-line transducer modeling in an adaptive active
attenuation system using random noise (Eriksson & Allie, 1989).
The noise reduction performance of this ANC system is degraded by
continuous injection of unit variance auxiliary noise for secondary
path modeling. Kuo et al. addressed this issue by injecting a
low power auxiliary noise for secondary path modeling (Kuo
& Vijayan, 1997). In comparison with previous methods, Zhang
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et al. improved the convergence speed and estimation accuracy
by developing a cross-updation scheme (Zhang et al., 2001) and
Akhtar et al. achieved improved convergence speed by the use of
a variable step size LMS algorithm (Akhtar et al., 2006). In these
methods, continuous injection of fixed variance auxiliary noise
improves the modeling accuracy but increases the noise level at
error microphone. Zhang et al. handled this issue by presenting
an auxiliary noise power scheduling strategywith norm constraint
manipulation (Zhang et al., 2003). In this strategy, noise power is
varied in accordancewith the power of the reference signal and the
convergence status of ANC system. Similarly, Akhtar et al. extended
the work in Akhtar et al. (2006) by introducing a noise power
scheduling techniquewhich uses power ratio of themodeling error
signal and residual error signal for varying the power of auxiliary
noise (Akhtar et al., 2007). Carini et al. proposed optimal variable
step-size normalized LMS algorithms and auxiliary noise power
scheduling for online secondary path modeling in feed-forward
ANC systems (Carini & Malatini, 2008). This estimation algorithm
responds poorly to the perturbations in acoustic paths. Davari et al.
designed a robust onlinemodeling technique for ANC systems that
completely stops injection of auxiliary noise after the convergence
of secondary path modeling filter (Davari & Hassanpour, 2009).
Shakeel et al. presented a two-stage gain schedule for auxiliary
noise in Ahmed et al. (2013). Initially, gain is varied in relation
with power of modeling error signal. After achieving sufficient
level of modeling accuracy, gain is varied on the basis of the
correlation estimate of two consecutive samples of modeling
error signal. Along with the improvement in performance of the
ANC system, increase in number of tunable parameters makes
room for improvement in the methods of Ahmed et al. (2013)
and Carini and Malatini (2008). Gaiotto presented a tuning-less
approach in secondary path modeling in Gaiotto (2013) without
improving the estimation accuracy. Tyagi et al. proposed online
estimation of secondary path in active noise control systems using
generalized Levinson Durbin algorithm (Tyagi et al., 2014). Saeed
et al. presented a variable step-size based fractional least mean
square algorithm to improve the online secondary path estimation
in Aslam and Raja (2015). In this scheme, the step-size increases
in relation with the power ratio of modeling error signal and
residual error signal. After convergence of modeling filter, power
of modeling error signal dictates the step-size. Also, an upper
bound is used to define the maximum value of step-size. Except
Gaiotto (2013) and Tyagi et al. (2014), all the above mentioned
algorithms use variations of slope gradient (SG) algorithm for
parameter estimation, which has slow convergence rate as it
does not make sufficient use of available data by using only
the current data at each iteration (Ding & Chen, 2007). Also,
the presence of disturbance at the error microphone degrades
the noise reduction performance of above-mentioned algorithms.
This disturbance arises in many real world applications like the
noises generated by passing-by automobiles act as disturbance for
ANC systems in electronic mufflers for automobiles. In industrial
installations, machinery close to the location of error microphone
can cause disturbance for ANC systems. ANC headsets for voice
communications in noisy environments is another important
example. Active headsets improve the speech quality for voice
communication by canceling the primary noise that penetrates
the passive ear muffs. In this case, the voice (or music for audio
headsets) becomes a disturbance to the ANC system (Ahmed et al.,
2013; Kuo &Morgan, 1996; Latos & Paweczyk, 2010). In this paper,
we discuss a maximum likelihood least squares (MLLS) method
for ANC systems with autoregressive moving average (ARMA)
noises at error microphone. The maximum likelihood estimation
method makes use of the information in the available data for
computations at each iteration rather than using current data only
(including the data from current and previous iterations) and gives

Fig. 1. Basic feedforward ANC system.

precise estimate of the distribution parameter estimates (Genschel
& Meeker, 2010). Also, usage of MLLS algorithm for secondary
path algorithm brings the advantage of zero tuning parameter as
compared to above-mentioned algorithms.

Maximum likelihood estimation techniques are a class of im-
portant methods for dynamical system identification which have
been discussed for a long time (Ljung, 1999) and have been ap-
plied tomany areas such as spatial analysis (Kyung &Ghosh, 2010),
image texture analysis (Lundahl, Ohley, Siffert, & Kay, 2007), as-
set pricing modeling in finance fields (Kayahan & Stengos, 2007)
and speech recognition (Bahl, Jelinek, & Mercer, 2009). In recent
years, numerous likelihood estimation methods are developed for
different models. For example, Agüero et al. discussed the equiva-
lence of time and frequency domain maximum likelihood estima-
tion methods (Agüero, Yuz, Goodwin, & Delgado, 2010); Södersöm
et al. performed an analysis on the accuracy of time domain maxi-
mum likelihood method and sample maximum likelihood method
for output error identification and errors-in-variables (Södersöm,
Hong, Schoukens, & Pintelon, 2010). Recently, Wang et al. derived
the maximum likelihoodmethod for the controlled autoregressive
autoregressive systems (Wang, Li, & Ding, 2012) and controlled au-
toregressive autoregressive moving average systems (Wang, Ding,
& Dai, 2012). This paper proposes a maximum likelihood least
squares identification method for online secondary path model-
ing in the presence of ARMA disturbance at the error microphone,
based on the maximum likelihood principle. In comparison with
previous methods, the proposed method improves the estimation
accuracy of secondary path modeling in the presence and absence
of disturbance at errormicrophone. This improvement helps in en-
hancing the noise reduction capability of proposed ANC system.

The remainder of this paper is organized as follows: Section 2
establishes the signal flow in the proposed ANC structure.
Section 2.1 derives the maximum likelihood objective function
according to themaximum likelihood principle. Section 2.2 derives
a maximum likelihood least squares algorithm for parameter
identification. Section 2.3 presents the computational complexity
analysis of the proposed ANC system. Simulation results are
illustrated in Section 3 and concluding remarks are summarized
in Section 4.

2. Proposed methodology

The schematic of proposed methodology is shown in Fig. 2,
where x(n) is the reference signal picked up by reference
microphone, e(n) is the error signal detected by error microphone,
P(z) represents the transfer function of primary path (transfer
function from reference sensor to error signal), S(z) represents
the transfer function of secondary path and W is the noise control
filter of tap length L. The control-filter-output signal, y(n), can be
computed as:

y(n) = wT (n)xw(n), (1)
where w(n) is the coefficient vector of noise control filter at time
n and can be written as:

w(n) = [w0(n), w1(n), . . . , w(L−1)(n)]T , (2)

xw(n) = [x(n), x(n − 1), . . . , x(n − (L − 1))]T . (3)
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