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a b s t r a c t

This paper addresses distributed optimal tracking control ofmulti-agent linear systems subject to external
disturbances. The concept of differential game theory is utilized to formulate this distributed control
problem into a multi-player zero-sum differential graphical game, which provides a new perspective on
distributed tracking of multiple agents influenced by disturbances. In the presented differential graphical
game, the dynamics and performance indices for each node depend on local neighbor information and
disturbances. It is shown that the solution to the multi-agent differential graphical games in the presence
of disturbances requires the solution to coupled Hamilton–Jacobi–Isaacs (HJI) equations. Multi-agent
learning policy iteration (PI) algorithm is provided to find the solution to these coupled HJI equations
and its convergence is proven. It is also shown that L2-bounded synchronization errors can be guaranteed
using this technique. An online PI algorithm is given to solve the zero-sum game in real time. A simulation
example is provided to show the effectiveness of the online approach.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The distributed control of multi-agent systems has received
much attention in the past years, due to its potential applications
in a variety of engineering systems. A rich body of literature has
been developed on distributed control methods for consensus and
synchronization (Fax & Murray, 2004; Jadbabaie, Lin, & Morse,
2003; Olfati-Saber & Murray, 2004; Qu, 2009; Ren & Beard, 2005,
2008; Ren, Beard, & Atkins, 2005; Tsitsiklis, 1984), and some good
surveys can be found in Lewis, Zhang, Hengster-Movric, and Das
(2014), Qu (2009) and Ren et al. (2005).

The objective in distributed control is to design for each agent
a control protocol, depending only on local neighbor information,
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to guarantee synchronized behavior of all the agents by reaching
agreement on certain quantities of interests. Although agent
dynamics may be subject to external disturbances, most of the
existing distributed control methods ignore these disturbances.
However, to avoid performance degradation, it is necessary to
consider the effect of disturbances in the distributed control
problem formulation a priori.

Recently, disturbance attenuation has been taken into account
in distributed control of multi-agent systems. Lin, Jia, and Li (2008)
studied the H∞ consensus problem for first-order dynamical
systems. Li, Duan, and Huang (2009) transformed the problem of
the disturbance rejection for multi-agent linear systems to the
design of a set of H∞ controllers for a set of independent systems.
Liu and Jia (2010, 2011) derived conditions in terms of linearmatrix
inequalities (LMIs) to ensure consensus of themulti-agent systems
with a prescribed H∞ level. Li, Duan, and Chen (2011) considered
the distributed H2 and H∞ control problems for linear multi-agent
systems. Wen, Duan, Li, and Chen (2012) addressed a finite L2-gain
performance index for nonlinear multi-agent systems. Yang and
Wang (2013) presented notions of Lp-gain and L2-gain consensus
for multi-agent systems in the presence of disturbances.

Most of the existing methods for multi-agent control in the
presence of disturbances considered the leaderless consensus (or
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distributed regulation) problem, in which all nodes converge to a
common value that cannot generally be controlled. On the other
hand, the problem of distributed tracking (or leader–follower
consensus problem), which is the problem of interest of this paper,
requires that all nodes synchronize to a leader (Hong, Hu, &
Gao, 2006; Li, Wang, & Chen, 2004; Ren, Moore, & Chen, 2007;
Wang & Chen, 2002). Moreover, most of these methods derived
conditions based on linear matrix inequalities (LMIs) to solve the
problem (except for Wen et al., 2012; Yang & Wang, 2013). A new
framework based on differential game theory was developed to
achieve consensus of multi-agent systems (Vamvoudakis, Carrillo,
& Hespanha, 2013) and synchronization of multi-wheeled mobile
robots (Luy, Thanh, & Tri, 2013). Specifically, Vamvoudakis et al.
(2013) presented a distributed algorithm, but it is limited to
double integrator systems. Moreover, the convergence proof of
the presented policy iteration algorithm and the L2-bounded
synchronization error were not shown.

Over the last decade, multi-agent learning systems have been
developed to create agents that learn from experience how to
best interact with other agents (Busoniu, Babuska, & De Schutter,
2008; Chang, 2009; Lakshmanan & Farias, 2006; Littman, 2001;
Vrancx, Verbeeck, & Nowe, 2008; Wheeler & Narendra, 1986). A
significant part of the research on multi-agent learning concerns
reinforcement learning techniques for finite state Markov decision
processes. Convergence of each agent to the optimal response
using Q-learning was shown on condition that all other agents
converge to their optimal response (Littman, 2001). To the best of
our knowledge, themulti-agent reinforcement learning for general
continuous-time and continuous-state systems in the presence of
disturbance has not yet been considered. Moreover, a rigorous
proof of the convergence of the multi-agent learning methods to
the optimal Nash equilibrium has not yet been provided in the
general case.

The main contributions of the paper are as follows. First, a
‘‘Bounded L2-Gain Synchronization Problem’’ is formulated for
multi-agent systems in the presence of disturbances in the agent
dynamics. Second, the concept of differential game theory is
utilized to formulate the distributed L2-Gain control problem into
a multi-player zero-sum differential graphical game. Next, it is
shown that the solution to this differential graphical game requires
the solution to coupled Hamilton–Jacobi–Isaacs (HJI) equations.
The Nash solution of the graphical game is investigated and the
global synchronization error is shown to be L2-bounded if the
graph has a spanning tree. Then, a multi-agent policy iteration
algorithm is presented to find the solution to these HJI equations.
A rigorous proof of the convergence of the proposed learning
algorithm to the optimal Nash equilibrium is presented. This work
extends the work of Vamvoudakis, Lewis, and Hudas (2012) to the
cases inwhich the external disturbances cannot be ignored, on one
hand, and the work of Vamvoudakis et al. (2013) to the distributed
tracking problem with general linear systems, on the other hand.

This paper is organized as follows. The next section provides
mathematical background and the problem formulation for
distributed L2-gain control of multi-agent systems. This problem
is then formulated into a multi-player zero-sum differential
graphical game in Section 3. The Nash solution to this graphical
game is presented in Section 4. Sections 5 and 6 present policy
iteration algorithms and their implementation, respectively, for
finding the Nash solution to the presented game. Sections 7 and
8 present simulation results and conclusion, respectively.

2. Preliminaries and problem formulation

In this section, a review of communication graphs is given and
the problem of synchronization of multi-agent systems subject to
external disturbances is formulated.

2.1. Mathematical background

A directed graph G consists of a pair (V , E), where V =

{α1, . . . , αN} is a finite nonempty set of nodes and E ⊆ V × V is
a set of ordered pairs of nodes, called edges. E = [eij] is called the
adjacency matrix with eij > 0if (αj, αi) ∈ E and eij = 0otherwise.
Note that diagonal elements eii = 0. The set of nodes αj with
edges incoming to node αi is called the neighbors of node i, namely
Ni = {αj : (αj, αi) ∈ E}. The graph Laplacian matrix is defined as
L = D − E, which has all row sums equal to zero. D = diag(di) is
called the in-degree matrix, where di =


j∈Ni

eij is the weighted
in-degree of node i.

Definition 1 (Lewis et al., 2014). A (directed) tree is a connected
digraph where every node except one, called the root, has in-
degree equal to one. A graph is said to have a spanning tree if a
subset of the edges forms a directed tree.

Throughout the paper, σ̄ (A) and σ(A) are denoted as the
maximum and minimum singular values of the matrix A,
respectively.

2.2. Problem formulation

Consider the communication graphG = (V , E)havingN agents,
each with dynamics given by

ẋi = Axi + Biui + Divi (1)

where xi(t) ∈ Rn, ui(t) ∈ Rmi and vi(t) ∈ Rqi are the state, control
input and external disturbance of node i, respectively. The state of
the control or leader node is x0(t) ∈ Rn and it is assumed to satisfy
the dynamics

ẋ0 = Ax0. (2)

Standard Synchronization Problem. Design ui(t) in (1) so that
∥xi(t) − x0(t)∥ → 0, ∀i when vi(t) = 0.

For each node i, the local neighborhood tracking error δi ∈ Rn is
defined as Khoo, Xie, and Man (2009)

δi =


j∈Ni

eij(xi − xj) + gi(xi − x0) (3)

where gi ≥ 0 is called the pinning gain and gi > 0 for at least one
root node i (Li et al., 2004).

The overall tracking error vector for all nodes is given by

δ = ((L + G) ⊗ In)(x − x0) = ((L + G) ⊗ In)ζ (4)

where x = [xT1 xT2 · · · xTN ]
T , δ = [δT

1 δT
2 · · · δT

N ]
T are

global node state vector and the global tracking error vector, and
x0 = Ix0 ∈ RnN , with I = 1N⊗In ∈ RnN×n,In then×n identitymatrix
and 1N the N-vector of ones. The Kronecker product is denoted
by ⊗. The pinning gain matrix G ∈ RN×N is a diagonal matrix
with diagonal entries equal to the pinning gains gi. The (global)
synchronization error is

ζ =

x − x0


∈ RnN . (5)

The following lemma shows that the small local neighborhood
synchronization error implies small global synchronization error.

Lemma 1 (Khoo et al., 2009). Let (L + G) be non-singular. Then the
synchronization error is bounded by

∥ζ∥ ≤ ∥δ∥ /σ(L + G). (6)

Remark 1. The matrix (L + G) is non-singular if the graph has a
spanning tree and gi ≠ 0 for a root node i (Khoo et al., 2009).
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