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a b s t r a c t

Large-scale network systems involve a large number of states, which makes the design of real-time con-
trollers a challenging task. A distributed controller design allows to reduce computational requirements
since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel
methodology for solving constrained optimization problems in a distributed way inspired by popula-
tion dynamics. This methodology consists of an extension of a population dynamics equation and the
introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller
sub-problems, whose feasible regions vary over time achieving an agreement to solve the global prob-
lem. The methodology also guarantees attraction to the feasible region and allows to have few changes
in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, dis-
tributed controllers are designedwith the proposedmethodology and applied to the large-scale Barcelona
DrinkingWater Network (BDWN). Some simulations are presented and discussed in order to illustrate the
control performance.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An approach to design control systems is to express the desired
performance of the plant as an optimization problem with mul-
tiple constraints, e.g., minimization of the error, minimization of
the norm of states, minimization of the energy associated to con-
trol actions, all of those objectives subject to physical and/or op-
erational constraints. When the system involves a large number of
states, the design of optimization-based controllers becomes chal-
lenging, because of the lack of centralized information or because
of other implications associated to information (e.g., communica-
tion issues, costs, reliability). The limitation regarding information
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availability demands the development of distributed optimization
techniques that achieve an optimal point of a performance cost
function for the total system by using only local and partial in-
formation. There are many distributed optimization applications
in engineering, and most of them using a network systems ap-
proach (Bertsekas, 2012; Gao & Cheng, 2005; Simonetto, Keviczky,
& Babuska, 2010, 2011). These problems have been solved by using
distributed optimization algorithms based on the Newton method
(Jadbabaie, Ozdaglar, & Zargham, 2009;Wei, Ozdaglar, & Jadbabaie,
2013), the sub-gradient method (Johansson, Keviczky, Johansson,
& Johansson, 2008; Zhu &Martinez, 2012), and the consensus pro-
tocol (Johansson et al., 2008; Notarstefano & Bullo, 2011; Zhang &
Liu, 2014), among other techniques. On the other hand, game the-
ory studies the interaction of decisionmakers and the interconnec-
tion of decisionmaking elements based on local information. From
this perspective, game-theoretical tools become very useful to de-
scribe the behavior of distributed engineered systems (Marden &
Shamma, 2015). One important characteristic of this theoretical
approach is the Nash equilibrium concept, which describes how a
global objective is reachedbasedonly on local decisions. The task to
reach a global objective with partial information is one of themain
aspects in distributed optimization problems. This problem may
be seen as a multi-agent case in which there are local interactions
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among them. Furthermore, evolutionary game theory describes
the previously mentioned model of agents interacting but also
considering a determined population structure, i.e., constraints in
the interaction among agents, (Nowak, 2006). From this point of
view, this theory is suitable to design intelligent systems and con-
trollers for systems where there are local decision makers (lo-
cal controllers) and achieving a global performance and/or global
goal under a specific structure, which is given by the topology of
the system (e.g., energy networks, water networks, transportation
networks, etc.). Also, game theory has become an important and
powerful tool for solving optimization problems since the Nash
equilibrium corresponds to the extreme of a potential function
satisfying the Karush–Kuhn–Tucker (KKT) first order condition
(Sandholm, 2010). This property is commonly used in a class
of games known as potential games, which have gotten spe-
cial importance in the solution of engineering problems. For in-
stance, in Marden (2012) potential games are widely studied
from the perspective of state-based games. Furthermore, some
kind of optimization problems can be solved by finding a Nash
equilibrium for an appropriate designed game, and the consid-
eration of only local information allows to solve distributed op-
timization problems (Arslan & Shamma, 2004). For instance, in
Gharesifard and Cortes (2013) a distributed convergence to Nash
equilibria in two networks is discussed for zero-sum games. In
Pantoja and Quijano (2011), distributed optimization has been ap-
plied using replicator dynamics (one of the six fundamental pop-
ulation dynamics), based on local information. In Li and Marden
(2014), the design of utility functions for each agent in order to
decouple constraints is presented, and the usage of penalty func-
tions and barrier functions is discussed. The design of local con-
trol laws for individual agents to achieve a global objective is
proposed in Li and Marden (2013), which has been extended in
Zhang, Qi, and Zhao (2013) by using matrix theory. The consider-
ation of dynamics in the system-equivalent graph that describes
information sharing among decision variables is paramount since
some network systems in engineering might grow (e.g., drainage
network systems, drinkingwater networks, distributed generation
systems). These dynamics represent an addition or removal of el-
ements to/from the network. Moreover, the connectivity of the
network elements could change over time (e.g., re-configuration
systems), which could affect availability of information. In Li and
Marden (2012), variations on the graph that determines the system
information sharing are studied, where the set of communication
links varies with a certain probability.

The main contribution of this paper is to introduce a novel
methodology to solve constrained optimization problems in a
distributed way, inspired by the population dynamics studied in
Sandholm (2010). Different from the already published popula-
tion dynamics approaches, this method adds dynamics to the
population masses, making the population simplex vary properly
over time making the method robust (Barreiro-Gomez, Quijano,
& Ocampo-Martinez, 2014a). The method consists in considering
the global problem as a society, where there is limitation of in-
formation sharing. The society is divided into several populations,
where there is full available information. Then, a local optimiza-
tion problem is solved at each population whose feasible region
varies dynamically, i.e., there is an interchange of masses among
populations. The feasible regions vary until all populations agree to
solve the global optimization problem. In addition to this, applica-
tions in the control field may involve disturbances that could lead
the trajectories to leave the feasible region (given by constraints
that impose a desire performance) (Barreiro-Gomez, Quijano,
& Ocampo-Martinez, 2014b). Another relevant difference with
respect to already published distributed population dynamics ap-
proaches is that the proposed method guarantees that the fea-
sible region is attractive. The last mentioned feature potentially

improve the control performance rejecting disturbances. Finally,
the design of the decision-making distributed system allows to
have a reduced number of modifications when the graph topol-
ogy changes, i.e., there are new nodes/edges in the graph or there
are nodes/edges that disappear. Also, some redundant links can be
identified, i.e., links in the graph that are not necessary in the con-
nection among cliques.

The remainder of the paper is organized as follows. Section 2
shows preliminaries of graphs, population dynamics, and intro-
duces the mathematical formalism that is used throughout the
paper. Section 3 presents the population dynamics and the mass
dynamics, including relevant characteristics. Then, the stability
analysis of the dynamics is presented in Section 4. Section 5 shows
the different possible changes that the social graph might suffer,
and explains the implication over the design. Section 6 presents the
optimization problem forms that could be solved with the popu-
lation dynamics and the mass dynamics, presenting also some il-
lustrative examples and results. Afterwards, the robustness of the
method is shown by applying disturbances in Section 7. Then, Sec-
tion 8 presents a large-scale system and the design of optimal con-
trollers by using the proposed methodology. Controllers consider
both a model-based approach, and a model-free approach. Sec-
tion 9 shows the results and discussion about the performance of
controllers designedwith the proposedmethodology. In Section 10
the main conclusions are drawn.

Notation. The sub-index is associated to a node of a graph, or to
a strategy in a game. On the other hand, the super-index refers to
a population. For instance, the sub-index i in xi, Pi, x

p
i or Fi refers

either to a node in a graph or to a strategy, and the super-index p
in mp, xp, xpi or Np indicates a population. Also it should be clear
that the super-index is not an operational number, i.e., N3 refers
to population three but N3

≠ NNN . We use bold font for column
vectors and matrices, e.g., x, and H; and non-bold style is used for
scalar numbers, e.g., Np. Calligraphy style is used for sets, e.g., S.
The column vector withN unitary entries is denoted by 1N , and the
column vector with null entries and suitable dimension is denoted
by 0. The identity matrix with dimension N × N is denoted by IN .
The cardinality of a set S is denoted by |S|. The continuous time is
denoted by t , and it is mostly omitted throughout the manuscript
in order to simplify the notation. Finally,R+ represents the set of all
non-negative real numbers, and Z+ represents the set of positive
integer numbers.

2. Preliminaries

Let G = (V, E) be an undirected non-complete connected
graph that exhibits the topology of a society, where V is the set
of vertices of G that represents the set of N available strategies
in a social game denoted by S = {1, . . . ,N}; and E ⊂ {(i, j) :

i, j ∈ V} is the set of edges of G that determines the possible
interactions among society strategies. The graph G is divided into
M sub-complete graphs known as cliques (a complete sub-graph),
where each clique represents a population within the society. The
set of populations is denoted by P = {1, . . . ,M}, and the set
of cliques is denoted by C = {Cp

: p ∈ P }. The clique of the
population p ∈ P is a graph given by Cp

= (Vp, Ep), where the
set Vp represents the set of Np available strategies in a population
game denoted by Sp

= {i : i ∈ Vp
}, and Ep

= {(i, j) : i, j ∈ Vp
}

is the set of all the possible links in Cp determining full interaction
among the population strategies.

It is assumed that cliques are already known, i.e., the number
of cliques M , the set of vertices Vp, and the set of edges Ep for all
p ∈ P are known. Although, if it is desired to obtain the optimal
set of cliques (i.e., the minimum amount of cliques M such that
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