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a b s t r a c t

This article introduces a new class of sets, called constrained zonotopes, that can be used to enclose sets
of interest for estimation and control. The numerical representation of these sets is sufficient to describe
arbitrary convex polytopes when the complexity of the representation is not limited. At the same time,
this representation permits the computation of exact projections, intersections, and Minkowski sums us-
ing very simple identities. Efficient and accurate methods for computing an enclosure of one constrained
zonotope by another of lower complexity are provided. The advantages and disadvantages of these sets
are discussed in comparison to ellipsoids, parallelotopes, zonotopes, and convex polytopes in halfspace
and vertex representations. Moreover, extensive numerical comparisons demonstrate significant advan-
tages over other classes of sets in the context of set-based state estimation and fault detection.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many modern control algorithms make use of sets (e.g., inter-
vals, ellipsoids, zonotopes, polytopes) as basic computational ob-
jects, with the aim of characterizing some sets of interest, such as
reachable or invariant sets of dynamical systems, or sets of states or
parameters consistent with a bounded-errormodel (Althoff, Sturs-
berg, & Buss, 2010; Ingimundarson, Bravo, Puig, Alamo, & Guerra,
2009; Le, Stoica, Alamo, Camacho, &Dumur, 2013;Mayne, Rakovic,
Findeisen, & Allgower, 2006; Scott & Barton, 2013). The true set of
interest is often difficult or impossible to represent exactly with fi-
nite data, so its enclosure by an element of a class of simpler sets is
sought instead. The choice of class for a given application is based
on a tradeoff between (i) the accuracy with which amember of the
class can represent the set of interest, and (ii) the complexity of
the required computations. For linear estimation and control prob-
lems, the required computations typically involve standard set op-
erations such as Minkowski sums, linear mappings, intersections,
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and Pontryagin differences. Another important consideration in
(ii) is the convenience of the approximating set for its end use,
which may involve checking for the inclusion of given points, as
inmodel invalidation and fault diagnosis (Rosa, Silvestre, Shamma,
& Athans, 2010), checking for intersection with another set, as in
system verification and safety analysis (Althoff et al., 2010), or us-
ing the set as a constraint in an optimization problem, as in robust
optimal control and active fault diagnosis (Mayne et al., 2006; Rai-
mondo, Marseglia, Braatz, & Scott, 2013).

This article introduces a new class of sets, constrained zonotopes,
and demonstrates that this class provides a better tradeoff between
accuracy and efficiency than existing classes for some represen-
tative problems of interest. Although these new sets potentially
have broad applicability, their performance is demonstrated here
by considering the classical set-based state estimation problem
for discrete-time linear systems with bounded noise (Schweppe,
1968), and its application to set-based fault diagnosis (Scott, Find-
eisen, Braatz, & Raimondo, 2014). Some notable advantages of the
constrained zonotope representation are:
• (Accuracy) When the complexity of the representation is not

limited, it can describe arbitrary convex polytopes;
• (Efficiency) Standard set operations, including intersections, can

be computed exactly through simple identities;
• (Tunability) Effective techniques are provided to conservatively

reduce the complexity of a given set, enabling a highly tunable
tradeoff between efficiency and accuracy.
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To motivate this new class of sets, common set representations
are reviewed in Section 2 and their advantages and disadvantages
are discussed with respect to common set operations. Constrained
zonotopes are introduced in Section 3, and associated computa-
tions are described in Sections 3.1–4. Numerical results are pre-
sented in Sections 5–6, and Section 7 concludes the paper.

2. Set representations and operations

Definition 1. Let P, Z, E ⊂ Rn. P is a convex polytope if it is
bounded and (1) holds; Z is a zonotope if (2) holds, and E is an
ellipsoid if (3) holds:

∃(H, k) ∈ Rnh×n
× Rnh : P = {z ∈ Rn

: Hz ≤ k}, (1)

∃(G, c) ∈ Rn×ng × Rn
: Z = {Gξ + c : ∥ξ∥∞ ≤ 1}, (2)

∃(Q, c) ∈ Rn×n
× Rn

: E = {Qξ + c : ∥ξ∥2 ≤ 1}. (3)

Z is a parallelotope if (2) holds with ng = n and an interval if (2)
holds with G = In×n.

Eq. (1) is called the halfspace-representation (H-rep) of P . P can
also be represented as the convex hull of its vertices (V-rep).
Zonotopes are convex polytopes that are centrally symmetric; every
chord through c is bisected by c. Moreover, a convex polytope
is a zonotope if and only if every 2-face is centrally symmetric
(McMullen, 1971). This symmetry makes the representation (2)
possible. The vector c is called the center, the columns of G are
called the generators, and (2) is called the generator-representation
(G-rep). The G-rep of a zonotope is oftenmuchmore compact than
the equivalent H- or V-rep. Both zonotopes and ellipsoids are affine
images of a unit ball. However, zonotopes use the ∞-norm and
ng need not equal n. The representation (3) captures degenerate
ellipsoids when Q is singular and is equivalent to the familiar form
E = {z : (z − c)T(QQT)−1(z − c) ≤ 1} whenever Q is invertible.

Note that intervals, parallelotopes, and ellipsoids all have
fixed complexity for fixed n. In contrast, convex polytopes
and zonotopes can be made arbitrarily complex by increasing
the number of halfspaces and generators, respectively, which
makes these sets more flexible, but also more cumbersome. The
complexity of a zonotope is described by its order, ng/n.

For the estimation and fault diagnosis problems considered in
Sections 5–6, as well as many other problems in linear control
theory, the accuracy and efficiency of the below set operations are
of primary concern:

Definition 2. Let Z,W ⊂ Rn, Y ⊂ Rk, R ∈ Rk×n, and define

RZ ≡ {Rz : z ∈ Z}, (4)
Z + W ≡ {z + w : z ∈ Z, w ∈ W }, (5)
Z ∩R Y ≡ {z ∈ Z : Rz ∈ Y }. (6)

Eq. (4) is a linearmapping of Z , (5) is theMinkowski sum, and (6) is a
generalized intersection that arises in state estimation (e.g., with Z
containing the current state and Y a bounded-error measurement;
see Section 5). Note that ∩R is the standard intersection when
k = n and R = I.

A class of sets is closed under a set operation if performing
the operation on members of the class results in another member
of the class. The convex polytopes are closed under (4)–(6) and,
using H-rep, both (4) and (6) can be computed efficiently if R
is invertible. However, the complexity of (5) is exponential in
n, as is the worst-case number of halfspaces describing Z + W
(Hagemann, 2015; Tiwary, 2008). The same is true of (4) and (6)
whenR is not invertible (e.g., polytope projection) (Jones, Kerrigan,
& Maciejowski, 2008). In V-rep, (4)–(5) are much simpler, but

(6) is NP-hard (Tiwary, 2008), and existing algorithms for inter-
conversion between H- and V-rep have worst-case exponential
run-time. Consequently, working with convex polytopes is very
costly and numerically unstable when n exceeds about 5 or the
number of halfspaces or vertices is large.

In contrast, intervals, parallelotopes, and ellipsoids all provide
low-complexity set representations and relatively low-cost set
operations. However, the intervals are not closed under (4) unless
R is diagonal, the parallelotopes and ellipsoids are not closed
under (5), and none of these classes are closed under (6) except
intervals when R is diagonal. Thus, the results of these operations
must be conservatively enclosed, which can ultimately lead to very
inaccurate enclosures of the set of interest. The optimal interval
enclosures of these operations are easily computed (Neumaier,
1990), but are often very weak enclosures of the true sets.
For ellipsoids, cheap heuristic enclosure methods are given in
Schweppe (1968). Optimal enclosures are given in Chernousko
(1980), Durieu, Walter, and Polyak (2001) and Fogel and Huang
(1982), but (6) requires the solution of a convex optimizationwhen
k > 1. Cheap heuristic enclosures for parallelotopes are given in
Chisci, Garulli, and Zappa (1996), and numerical results there show
that these are tighter than even the optimal ellipsoidal enclosures
in the context of state estimation.

Over the past decade, zonotopes have gained popularity
within the control community, particularly because (4)–(5) can be
computed exactly and efficiently in G-rep (Kuhn, 1998). Define
the shorthand Z = {G, c} ⊂ Rn for Z defined by (2). Then, with
Z = {Gz, cz} andW = {Gw, cw},

RZ = {RGz,Rcz}, (7)
Z + W = {[Gz Gw], cz + cw}. (8)

Clearly, these computations can be done efficiently and reliably,
even in high dimensions. Like general convex polytopes, these
operations are nonconservative, but lead to an increase in the
complexity of the set representation. However, in contrast to the
worst-case exponential increase in the size of the H-rep under
(4)–(5), the increase in the complexity of the G-rep is modest;
RZ has the same ng as Z , while the ng of Z + W is simply
the sum of the ng ’s of Z and W . Moreover, conservative order
reduction techniques are available that enclose a given zonotope
within a zonotope of lower order (Althoff et al., 2010; Combastel,
2003). Similar techniques have also been proposed for convex
polytopes, but the required computations are muchmore complex
(Hagemann, 2015). For zonotopes, these techniques provide a
tunable mechanism for balancing accuracy and complexity that
has proven to be effective in reachability analysis (Althoff et al.,
2010; Kuhn, 1998), identification (Bravo, Alamo, & Camacho,
2006), state estimation (Alamo, Bravo, & Camacho, 2005), and fault
detection (Ingimundarson et al., 2009; Scott et al., 2014).

However, zonotopes are not closed under intersection, and
tight enclosures are difficult to compute, which leads to serious
complications in many applications, such as state estimation and
hybrid systems verification (Althoff & Krogh, 2011; Bravo et al.,
2006). Indeed, the symmetry of zonotopes, as well as intervals,
parallelotopes, and ellipsoids, implies that they cannot accurately
represent sets that are strongly centrally asymmetric, which are
readily generated by (6). This has led some researchers to use a
combination of G- and H-rep, although the conversion from G- to
H-rep can be costly; it scales as ng

 ng
n−1


(Althoff & Krogh, 2011).

Set representations based on collections of sets have also
been proposed, such as unions of intervals (Neumaier, 1990) and
intersections of ellipsoids (Kurzhanski, 2011) or zonotopes (Althoff
& Krogh, 2011). These can be very accurate, but the associated
cost increases with the number of sets required, which can be
large. We restrict the scope of the comparisons herein to ‘single-
set’ representations.
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