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a b s t r a c t

We consider a multi-agent system with linear stochastic individual dynamics, and individual linear
quadratic ergodic cost functions. The agents partially observe their own states. Their cost functions and
initial statistics are a priori independent but they are coupled through an interference term (the mean
of all agent states), entering each of their individual measurement equations. While in general for a
finite number of agents, the resulting optimal control law may be a non linear function of the available
observations, we establish that for certain classes of cost and dynamic parameters, optimal separated
control laws obtained by ignoring the interference coupling, are asymptotically optimalwhen the number
of agents goes to infinity, thus forming for finiteN , an ϵ-Nash equilibrium.More generally though, optimal
separated control laws may not be asymptotically optimal, and can in fact result in unstable overall
behavior. Thus we consider a class of parameterized decentralized control laws whereby the separated
Kalman gain is treated as the arbitrary gain of a Luenberger like observer. System stability regions
are characterized and the nature of optimal cooperative control policies within the considered class is
explored. Numerical results and an application example for wireless communications are reported.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a surge of interest in the study and analysis of
large population stochastic multi-agent systems due to their wide
variety of applications over the past several years. Many practi-
cal applications and examples of these systems arise in engineer-
ing, biological, social and economic fields, such as wireless sensor
networks (Chong & Kumar, 2003), very large scale robotics (Reif
& Wang, 1999), controlled charging of a large population of elec-
tric vehicles (Karfopoulos & Hatziargyriou, 2013), synchroniza-
tion of coupled oscillators (Yin, Mehta, Meyn, & Shanbhag, 2012),
swarm and flocking phenomenon in biological systems (Grön-
baum&Okubo, 1994; Passino, 2002), evacuation of large crowds in
emergency situations (Helbing, Farkas, & Vicsek, 2000; Lachapelle,
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2010), sharing and competing for resources on the Internet (Alt-
man et al., 2006), to cite a few. Large-scale stochastic games with
unbounded costs were studied in Adlakha et al. (2008). Mean field
game theory, which addresses a class of dynamic games with a
large number of agents in which each agent interacts with the
average or so-called mean field effect of other agents via cou-
plings in their individual dynamics and cost functions, was studied
in Huang, Caines and Malhamé (2006), Huang, Caines, and Mal-
hamé (2012), Lachapelle and Lions (2007), Nourian, Caines, Mal-
hamé, and Huang (2012), Nourian, Caines, Malhamé, and Huang
(2013), Wang and Zhang (2012) and Wang and Zhang (2014). In Li
and Zhang (2008), the mean field linear quadratic Gaussian (LQG)
framework was extended to systems of agents with Long Time Av-
erage (LTA) (i.e., ergodic) cost functions such that the set of control
laws possesses an almost sure (a.s.) asymptotic Nash equilibrium
property.

Stochastic Nash games with partial observation have been of
interest since the late 1960s. LQG continuous-time zero-sum
stochastic gameswith outputmeasurements corrupted by additive
independent white Gaussian noise were studied in Rhodes and
Luenberger (1969a,b) under the constraint that each player is
limited to a linear state estimator for generating its optimal
controls. These results were extended to nonzero-sum Nash
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games in Saksena and Cruz (2005). In these works the authors
assumed that the separation principle holds. In Kian, Cruz, and
Simaan (2002), discrete-time nonzero-sum LQG Nash games
with constrained state estimators and two different information
structures were investigated, where it is shown that the optimal
control laws do not satisfy the separation principle and the
estimator characteristics depend on the controller gains.

Distributed decision-making with partial observation for large
population stochastic multi-agent systems was studied in Caines
and Kizilkale (2013, 2014); Huang, Caines and Malhamé (2006);
Wang and Zhang (2013), where the synthesis of Nash strategies
is investigated for the agents that are weakly coupled through
either individual dynamics or costs. In Abedinpour Fallah et al.
(2013a); Abedinpour Fallah Malhamé and Martinelli (2013b);
Abedinpour Fallah, Malhamé and Martinelli (2014) the authors
studied a somewhat dual situation whereby large populations of
partially observed stochastic agents, although a priori individually
independent, are coupled only via their observation structure. The
latter involves an interference term depending on the empirical
mean of all agent states. The study of such measurement-coupled
systems is inspired by a variety of applications, including for
instance the communications model for power control in cellular
telephone systems (Huang, Caines, & Malhamé, 2004; Perreau
& Anderson, 2006), where any conversation in a cell acts as
interference on the other conversations in that cell. Indeed, despite
the so-called signal processing gain achieved thanks to a user’s
specific coding advantage (and considered in our model to be of
order 1/N where N is the total number of agents), the ability of the
base station to correctly decode the signals sent by a given mobile,
remains limited by interference formed by the superposition of all
other in cell user signals. Viewed in this light, the studied problem
can be considered as a game over a noisy channel.

Individual agent dynamics are assumed to be linear, stochastic,
with linear local state measurements, and in the current paper,
we focus on the case where the measurements interaction
model is assumed to depend only on the empirical mean of
agents states in a purely additive manner. In general, in such
decentralized control problems, the measurement system could
be used for some sort of signaling, and control and estimation
are typically coupled (Witsenhausen, 1968). We assume that
each agent is constrained to use a linear Kalman filter-like state
estimator to generate its optimal strategies. For a finite number of
agents, we establish that for certain classes of cost and dynamic
parameters, optimal separated control laws obtained by ignoring
the interference coupling, are asymptotically optimal when the
number of agents goes to infinity, thus forming for finite N , an
ϵ-Nash equilibrium. More generally though, optimal separated
control laws may not be asymptotically optimal, and can in fact
result in unstable overall behavior. Thus we consider a class of
parameterized decentralized control laws whereby the separated
Kalman gain is treated as the arbitrary gain of a Luenberger like
observer. System stability regions are characterized and the nature
of optimal cooperative control policies within the considered class
is explored.

The rest of the paper is organized as follows. The problem
is defined and formulated in Section 2. Section 3 presents
the closed-loop dynamics model. In Section 4, a decentralized
control and state estimation algorithm via stability analysis is
described and a characterization of its optimality properties is
given. Section 5 presents parameterized cooperative solutions.
Also, both Sections 4 and 5 provide some numerical simulation
results. Section 6 presents an application example for wireless
communications. Concluding remarks are stated in Section 7.

2. Problem formulation

Consider a system of N agents, with individual scalar dynamics
for simplicity of computations. The evolution of the state

component is described by

xk+1,i = axk,i + buk,i + wk,i (1)

with partial scalar state observations given by:

yk,i = cxk,i + h


1
N

N
j=1

xk,j


+ vk,i (2)

for k ≥ 0 and 1 ≤ i ≤ N , where xk,i, uk,i, yk,i ∈ R are
the state, the control input and the measured output of the ith
agent, respectively. The random variables wk,i ∼ N (0, σ 2

w) and
vk,i ∼ N (0, σ 2

v ) represent independent Gaussian white noises
at different times k and at different agents i. The Gaussian initial
conditions x0,i ∼ N (x̄0, σ 2

0 ) are mutually independent and are
also independent of


wk,i, vk,i, 1 ≤ i ≤ N, k ≥ 0


. σ 2

w , σ
2
v and σ 2

0
denote the variance of wk,i, vk,i and x0,i, respectively. Moreover, a
is a scalar parameter and b, c, h > 0 are positive scalar parameters.

The problem to be considered is to synthesize the linear time
invariant decentralized separated policies such that each agent is
stabilized by a feedback control of the form

uk,i = −f x̂k,i, (3)

where x̂k,i is an estimator of xk,i based only on local observations
of the ith agent, and f is a constant scalar gain. For the purposes of
the paper, the class of decentralized separated policies (3) includes
all control policies satisfying the following three conditions: (i)
they are defined by two time invariant feedback gains K and f , (ii)
they are separated in that the control is a linear feedback −f x̂k,i on
the state estimate of xk,i, while the state estimate x̂k,i is obtained
from a Luenberger like observer equation under the assumed state
estimate feedback structure, i.e., it evolves according to:

x̂k+1,i = (a − bf )x̂k,i + K(yk+1,i − c(a − bf )x̂k,i), (4)

(iii) they are decentralized in that the state estimate is based solely
on agent based observations yk,i.

Furthermore, when the gain K is the Kalman gain as obtained
when assuming zero interference in the local measurements
(setting h = 0 in (2)), the resulting estimator (4) will be called
the naive Kalman filter. Moreover, the individual cost function for
each agent is given by

Ji , lim
T→∞

1
T

E
T−1
k=0

(x2k,i + ru2
k,i) (5)

where r > 0 is a positive scalar parameter.

Assumption 1. To simplify the synthesis procedure we assume
zero mean for initial conditions of all agents, i.e., Ex0,i = x̄0 =

0, i ≥ 1.

Remark 1. To show that the decentralized control problem
formulated here is a game, let us assume for the sake of discussion
that the original agent dynamics is unstable. Then it suffices to
observe that, for finite N at least, the inability of a single agent to
stabilize its own dynamics would have direct consequences on the
ability of other agents to stabilize their own, hence demonstrating
the impact of that agent on other agents’ individual costs.

3. Closed-loop dynamics model

3.1. Closed-loop agent dynamics

In this section first we obtain the 4th ordermodel of the closed-
loop agent dynamics. In particular, when local state estimate
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